首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The bone morphogenetic proteins, members of the transforming growth factor-β cytokine family, induce the osteoblast phenotype and promote osteogenesis in the bone marrow stroma. Simultaneously, these cytokines inhibit other mesodermal differentiation pathways, such as adipogenesis and myogenesis. The receptors for the bone morphogenetic proteins belong to a family of transmembrane serine/threonine kinase TGFβ type I and type II receptor proteins. In man, these include the activin receptor like kinase-3 (ALK-3), a type I receptor protein. We have used a polyclonal antibody to examine the expression of the native murine ALK-3 protein in murine tissues and bone morphogenetic protein-responsive cell lines. On Western blot analyses, we found that the native 85 kDa native ALK-3 protein was expressed in a number of murine tissues; protein and mRNA levels did not necessarily correlate. Two bone morphogenetic protein-responsive cell lines, BMS2 bone marrow stromal cells and C2C12 myoblasts, expressed the ALK-3 protein constitutively. Cell differentiation was accompanied by modest changes in ALK-3 protein levels. Immunoprecipitation of the ALK-3 protein cross linked to [125I] BMP-4 revealed two major receptor complexes of approximately 90 kDa and 170 kDa in size. Biotin surface-labeling experiments revealed that the 85 kDa ALK-3 protein was constitutively associated with a novel 140 kDa surface glycoprotein. Deglycosylation reduced the protein's size to 116 kDa, comparable in size to that of the recently described BMP type II receptor. These findings support the current model that BMP interacts with a pre-existing complex consisting of a type I and type II receptor protein. © 1996 Wiley-Liss, Inc.  相似文献   

3.
In previous work, we identified two insulin receptor species, RI (KAV = 0.31) and RII (KAV = 0.53), that could be separated by gel filtration on Sepharose 6B. In the present study, we sought to establish that these two receptor species do represent larger (RI) and smaller (RII) oligomeric forms of the receptor, rather than representing receptor species separated from each other by differential adsorption to the Sepharose matrix. Receptor solubilized from isolated human placenta membranes was purified by lectin- and insulin-agarose chromatography and was radiolabeled with carrier-free 125I. The labeled receptor was separated by Sepharose 6B gel filtration into two fractions (peak I, KAV = 0.31; peak II, KAV = 0.53), was immunoprecipitated by anti-insulin receptor antibody, and was analysed by electrophoresis in nonreducing polyacrylamide slab gels. The autoradiograms of the gels indicated that peak I (KAV = 0.31, RI receptor form) contained a number of receptor species of 240 000 daltons or greater, whereas peak II (KAV = 0.53, RII receptor form) contained mainly receptor species of 210 000 daltons or smaller. In particular, large amounts of a 90 000 dalton species (presumably free receptor beta-subunit) were present in peak II. Incubation of the material obtained from peak I with insulin resulted in a change in the electrophoretic pattern, which became identical with that observed for material recovered from peak II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
In order to study the receptor system for adrenocortical steroids, hippocampal cytosolic preparations--containing both type I and type II receptors--were subjected to anion exchange fast protein liquid chromatography (FPLC). With running buffer containing Tris, EDTA, and glycerol three peaks (1-3) were eluted from the column at 220, 400 and 560 mM NaCl respectively regardless of whether [3H]corticosterone or [3H]RU 28362 had been used as radiotracer. None of the peaks was caused by serum transcortin as revealed by control studies. However, the sequestering influence of transcortin on receptor binding of corticosterone could be demonstrated by the FPLC technique with mixtures containing serum and hippocampus cytosol. Competition experiments with cytosolic samples revealed that type I receptor was present only in peaks 2 and 3 while type II was found in all three peaks in variable amounts, depending on the presence of molybdate. When molybdate was added to the running buffer only two peaks (2 and 3) were eluted, both containing type I and type II receptors. Peak 1 was attributed to the activated type II receptor while peak 2 represented nonactivated receptors. The origin of peak 3 remains uncertain. The data indicate that molybdate must be present in the cytosolic preparation and in the running buffer to keep type II receptor in its nonactivated form. Type I receptor was probably not transformed into the activated form in the absence of molybdate but lost binding capacity and/or affinity for corticosterone.  相似文献   

6.
Signals elicited by transforming growth factor-beta (TGF-beta) superfamily ligands are generated following the formation of heteromeric receptor complexes consisting of type I and type II receptors. TAK1, a member of the MAP kinase kinase kinase family, and its activator, TAB1, participate in the bone morphogenetic protein (BMP) signaling pathway involved in mesoderm induction and patterning in early Xenopus embryos. However, the events leading from receptor activation to TAK1 activation remain to be identified. A yeast interaction screen was used to search for proteins that function in the pathway linking the receptors and TAB1-TAK1. The human X-chromosome-linked inhibitor of apoptosis protein (XIAP) was isolated as a TAB1-binding protein. XIAP associated not only with TAB1 but also with the BMP receptors in mammalian cells. Injection of XIAP mRNA into dorsal blastomeres enhanced the ventralization of Xenopus embryos in a TAB1-TAK1-dependent manner. Furthermore, a truncated form of XIAP lacking the TAB1-binding domain partially blocked the expression of ventral mesodermal marker genes induced by a constitutively active BMP type I receptor. These results suggest that XIAP participates in the BMP signaling pathway as a positive regulator linking the BMP receptors and TAB1-TAK1.  相似文献   

7.
Müllerian inhibiting substance (MIS or anti-Müllerian hormone) is a member of the transforming growth factor-beta family and plays a pivotal role in proper male sexual differentiation. Members of this family signal by the assembly of two related serine/threonine kinase receptors, referred to as type I or type II receptors, and downstream cytoplasmic Smad effector proteins. Although the MIS type II receptor (MISRII) has been identified, the identity of the type I receptor is unclear. Here we report that MIS activates a bone morphogenetic protein-like signaling pathway, which is solely dependent on the presence of the MISRII and bioactive MIS ligand. Among the multiple type I candidates tested, only ALK2 resulted in significant enhancement of the MIS signaling response. Furthermore, dominant-negative and antisense strategies showed that ALK2 is essential for MIS-induced signaling in two independent assays, the cellular Tlx-2 reporter gene assay and the Müllerian duct regression organ culture assay. In contrast, ALK6, the other candidate MIS type I receptor, was not required. Expression analyses revealed that ALK2 is present in all MIS target tissues including the mesenchyme surrounding the epithelial Müllerian duct. Collectively, we conclude that MIS employs a bone morphogenetic protein-like signaling pathway and uses ALK2 as its type I receptor. The use of this ubiquitously expressed type I receptor underscores the role of the MIS ligand and the MIS type II receptor in establishing the specificity of the MIS signaling cascade.  相似文献   

8.
Wishful thinking (Wit) is a Drosophila transforming growth factor-beta (TGFbeta) superfamily type II receptor most related to the mammalian bone morphogenetic protein (BMP) type II receptor, BMPRII. To better understand its function, we undertook a biochemical approach to establish the ligand binding repertoire and downstream signaling pathway. We observed that BMP4 and BMP7, bound to receptor complexes comprised of Wit and the type I receptor thickveins and saxophone to activate a BMP-like signaling pathway. Further we demonstrated that both myoglianin and its most closely related mammalian ligand, myostatin, interacted with a Wit and Baboon (Babo) type II-type I receptor complex to activate TGFbeta/activin-like signaling pathways. These results thereby demonstrate that Wit binds multiple ligands to activate both BMP and TGFbeta-like signaling pathways. Given that myoglianin is expressed in muscle and glial-derived cells, these results also suggest that Wit may mediate myoglianin-dependent signals in the nervous system.  相似文献   

9.
Protein carboxymethylase (EC 2.1.1.24) from cytosol of bovine brain was found to exist as two apparent isozymes that could be separated by chromatography on DEAE-cellulose at pH 8.O. Rechromatography of the two forms, designated PCM I and PCM II, indicated that they are not interconvertible. Both enzymes have a molecular weight of 24,300 by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. PCM I consists mainly of one isoelectric form, pI 6.5, whereas PCM II resolves into two forms of pI 5.6 and 5.7. The relative amounts of PCM I and PCM II show a marked tissue dependence. Brain has approximately twice as much PCM I as II, whereas liver contains only the type II enzyme. The two enzymes were found to have similar substrate specificities when tested with five different methyl-accepting proteins. Synapsin I, a basic protein associated with synaptic vesicles, was found to be an excellent methyl-accepting protein with regard to its Km (1.2 μM), but it exhibited a low stoichiome-try of methyl incorporation.  相似文献   

10.
BMPRII is a type II TGF-beta serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-beta type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-beta receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-beta receptors, may play a key role in ligand recognition.  相似文献   

11.
Alveolar epithelial type I and type II cells (AEC I and II) are closely aligned in alveolar surface. There is much interest in the precise identification of AEC I and II in order to separate and evaluate functional and other properties of these two cells. This study aims to identify specific AEC I and AEC II cell markers by DNA microarray using the in vitro trans-differentiation of AEC II into AEC I-like cells as a model. Quantitative real-time PCR confirmed five AEC I genes: fibroblast growth factor receptor-activating protein 1, aquaporin 5, purinergic receptor P2X 7 (P2X7), interferon-induced protein, and Bcl2-associated protein, and one AEC II gene: gamma-aminobutyric acid receptor pi subunit (GABRP). Immunostaining on cultured cells and rat lung tissue indicated that GABRP and P2X7 proteins were specifically expressed in AEC II and AEC I, respectively. In situ hybridization of rat lung tissue confirmed the localization of GABRP mRNA in type II cells. P2X7 and GABRP identified in this study could be used as potential AEC I and AEC II markers for studying lung epithelial cell biology and monitoring lung injury.  相似文献   

12.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta superfamily, play a variety of roles during mouse development. BMP type II receptor (BMPR-II) is a type II serine/threonine kinase receptor, which transduces signals for BMPs through heteromeric complexes with type I receptors, including activin receptor-like kinase 2 (ALK2), ALK3/BMPR-IA, and ALK6/BMPR-IB. To elucidate the function of BMPR-II in mammalian development, we generated BMPR-II mutant mice by gene targeting. Homozygous mutant embryos were arrested at the egg cylinder stage and could not be recovered at 9.5 days postcoitum. Histological analysis revealed that homozygous mutant embryos failed to form organized structure and lacked mesoderm. The BMPR-II mutant embryos are morphologically very similar to the ALK3/BMPR-IA mutant embryos, suggesting that BMPR-II is important for transducing BMP signals during early mouse development. Moreover, the epiblast of the BMPR-II mutant embryo exhibited an undifferentiated character, although the expression of tissue-specific genes for the visceral endoderm was essentially normal. Our results suggest that the function of BMPR-II is essential for epiblast differentiation and mesoderm induction during early mouse development.  相似文献   

13.
Signal reception of Müllerian inhibiting substance (MIS) in the mesenchyme around the embryonic Müllerian duct in the male is essential for regression of the duct. Deficiency of MIS or of the MIS type II receptor, MISRII, results in abnormal reproductive development in the male due to the maintenance of the duct. MIS is a member of the transforming growth factor-beta (TGFbeta) superfamily of secreted protein hormones that signal through receptor complexes of type I and type II serine/threonine kinase receptors. To investigate candidate MIS type I receptors, we examined reporter construct activation by MIS. The bone morphogenetic protein (BMP)-responsive Tlx2 and Xvent2 promoter-driven reporter constructs were stimulated by MIS but the TGFbeta/activin-induced p3TP-lux or CAGA-luc reporter constructs were not. The induction of Tlx2-luc was dependent upon the kinase activity of MISRII and was blocked by a dominant negative truncated ALK2 (tALK2) receptor but not by truncated forms of the other BMP type I receptors ALK1, ALK3, or ALK6. MIS induced activation of a Gal4DBD-Smad1 but not a Gal4DBD-Smad2 fusion protein. This activation could also be blocked by tALK2. The BMP-induced inhibitory Smad, Smad6, was up-regulated by MIS endogenously in Leydig cell-derived lines and is expressed in male but not female Müllerian duct mesenchyme. ALK6 has been shown to function as an MIS type I receptor. Investigation of the pattern of ALK2, MISRII, and ALK6 in the developing urogenital system demonstrated overlapping expression of ALK2 and MISRII in the mesenchyme surrounding the duct while ALK6 was observed only in the epithelium. Examination of ALK6 -/- male animals revealed no defect in duct regression. The reporter construct analysis, pattern of expression of the receptors, and analysis of ALK6-deficient animals suggest that ALK2 is the MIS type I receptor involved in Müllerian duct regression.  相似文献   

14.
Previous gel filtration binding assay studies indicated that rat vascular smooth muscle cells contained corticoid receptor I and corticoid receptor II sites which could be distinguished on the basis of their relative affinities for aldosterone and dexamethasone. Ion-exchange chromatography experiments were designed to separate the two sites for further studies on their physical characteristics and role in vascular smooth muscle cell physiology. Cultured aortic cells were incubated with 5-10 nM 3H steroid alone or in the presence of 10-fold non-radioactive steroid competitor for 30 min at 37 degrees C. Following cell lysis, total cellular protein-bound steroid was isolated using Sephadex G-25 and applied to a DEAE-cellulose ion-exchange column. Three peaks of radioactivity were eluted using a 1-200 mM sodium phosphate gradient: peak I (30-38 mM), peak II (52-64 mM), and peak III (92-102 mM). Peaks I and II contained 60% of the eluted radioactivity and exhibited the same steroid specificity as corticoid receptor II sites (dexamethasone greater than aldosterone). Peak III contained 40% of the eluted radioactivity and exhibited the same steroid specificity as corticoid receptor I sites (aldosterone greater than dexamethasone). These studies support the binding assay data on steroid specificity and relative proportion of type I and II sites. They also document the existence of type I and II corticoid receptors with different physicochemical characteristics in rat aortic smooth muscle cells.  相似文献   

15.
Inside the interphase cell, approximately 5% of the total intermediate filament protein exists in a soluble form. Past studies using velocity gradient sedimentation (VGS) indicate that soluble intermediate filament protein exists as an approximately 7 S tetrameric species. While studying intermediate filament assembly dynamics in the Xenopus oocyte, we used both VGS and size-exclusion chromatography (SEC) to analyze the soluble form of keratin. Previous studies (Coulombe, P. A., and E. Fuchs. 1990. J. Cell Biol. 111:153) report that tetrameric keratins migrate on SEC with an apparent molecular weight of approximately 150,000; the major soluble form of keratin in the oocyte, in contrast, migrates with an apparent molecular weight of approximately 750,000. During oocyte maturation, the keratin system disassembles into a soluble form (Klymkowsky, M. W., L. A. Maynell, and C. Nislow. 1991. J. Cell Biol. 114:787) and the amount of the 750-kD keratin complex increases dramatically. Immunoprecipitation analysis of soluble keratin from matured oocytes revealed the presence of type I and type II keratins, but no other stoichiometrically associated polypeptides, suggesting that the 750-kD keratin complex is composed solely of keratin. To further study the formation of the 750-kD keratin complex, we used rabbit reticulocyte lysates (RRL). The 750-kD keratin complex was formed in RRLs contranslating type I and type II Xenopus keratins, but not when lysates translated type I or type II keratin RNAs alone. The 750-kD keratin complex could be formed posttranslationally in an ATP-independent manner when type I and type II keratin translation reactions were mixed. Under conditions of prolonged incubation, such as occur during VGS analysis, the 750-kD keratin complex disassembled into a 7 S (by VGS), 150-kD (by SEC) form. In urea denaturation studies, the 7 S/150-kD form could be further disassembled into an 80-kD species that consists of cofractionating dimeric and monomeric keratin. Based on these results, the 750-kD species appears to be a supratetrameric complex of keratins and is the major, soluble form of keratin in both prophase and M-phase oocytes, and RRL reactions.  相似文献   

16.
Members of the transforming growth factor-beta (TGF-beta) superfamily are thought to regulate specification of a variety of tissue types in early embryogenesis. These effects are mediated through a cell surface receptor complex, consisting of two classes of ser/thr kinase receptor, type I and type II. In the present study, cDNA encoding zebrafish activin type II receptors, ActRIIa and ActRIIb was cloned and characterized. Overexpression of ActRIIb in zebrafish embryos caused dorsalization of embryos, as observed in activin-overexpressing embryos. However, in blastula stage embryos, ActRIIb induced formation of both dorsal and ventro-lateral mesoderm. It has been suggested that these inducing signals from ActRIIb are mediated through each specific type I receptor, TARAM-A and BMPRIA, depending on activin and bone morphogenetic protein (BMP), respectively. In addition, it was shown that a kinase-deleted form of ActRIIb (dnActRIIb) suppressed both activin- and BMP-like signaling pathways. These results suggest that ActRIIb at least has dual roles in both activin and BMP signaling pathways during zebrafish embryogenesis.  相似文献   

17.
18.
The extent of activation of rat submandibular protein kinase A (EC 2.7.1.37) isozymes following beta-adrenergic receptor stimulation was determined in vitro using dispersed cells and an 8-N3-[32P]cAMP photoprobe. The half-maximal binding of the photoprobe for microsomal and cytosolic type I and cytosolic type II was 9 nM, 27 nM and 92 nM, respectively. 'Cold trap' studies indicated that 70% of type I protein kinase A was activated following maximal beta-adrenergic receptor stimulation, whereas type II activation was less than 40%. Both cytosolic and microsomal type I activation occurred rapidly following beta-adrenergic receptor stimulation and both remain activated throughout the entire secretory period. Type I inactivation occurred rapidly subsequent to beta-adrenergic receptor blockade. The dose-response relationship for the isotypes following beta-adrenergic receptor activation demonstrated a greater extent of type I activation at submaximal concentrations of agonist. Although protein kinase A may not be the only kinase involved in rat submandibular mucin release, these data add further support to a direct regulatory role for this kinase, with type I having potentially a greater role than type II.  相似文献   

19.
Affinity chromatography on cyclic AMP columns allowed a two-step isolation of the cyclic-AMP-binding proteins from bovine kidney cytosol. An AMP-binding protein (apparent molecular weight approximately 60 000) and large amounts of a low affinity binding protein ('P35'; apparent subunit size approximately 35 000) were obtained in practically pure form besides the high affinity binding proteins of the R type. Among the R proteins the dimer R2 of the regulatory subunit of protein kinase II (apparent subunit size approximately 54 000) represented the bulk material. Small amounts of monomer, of higher aggregates, and of a protein 'P49' (subunit size approximately 49 000) presumably identical with the regulatory subunit of protein kinase I were also detected. The R protein fraction of kidney also contained a high affinity binding protein of smaller size (designated as R'; molecular weight approximately 37 000) which appeared to be derived from protein R2 of protein kinase II by limited proteolysis. At all stages of purification, R protein and its aggregates could be quantitatively transformed into R' protein (or a closely related polypeptide) by several proteases including the relatively unspecific proteinase K. The degradation product exhibited unchanged cyclic-AMP-binding capacities but had largely lost the ability to inhibit the catalytic subunit C of protein kinase, to be phosphorylated by C, and to form a dimer. Preliminary experiments indicate that protein R' may be a natural component of kidney tissue.  相似文献   

20.
To examine the role of bone morphogenetic protein (BMP) signaling in chondrocytes during endochondral ossification, the dominant negative (DN) forms of BMP receptors were introduced into immature and mature chondrocytes isolated from lower and upper portions of chick embryo sternum, respectively. We found that control sternal chondrocyte populations expressed type IA, IB, and II BMP receptors as well as BMP-4 and -7. Expression of a DN-type II BMP receptor (termed DN-BMPR-II) in immature lower sternal (LS) chondrocytes led to a loss of differentiated functions; compared with control cells, the DN-BMPR- II–expressing LS chondrocytes proliferated more rapidly, acquired a fibroblastic morphology, showed little expression of type II collagen and aggrecan genes, and upregulated type I collagen gene expression. Expression of DN-BMPR-II in mature hypertrophic upper sternal (US) chondrocytes caused similar effects. In addition, the DN-BMPR-II–expressing US cells exhibited little alkaline phosphatase activity and type X collagen gene expression, while the control US cells produced both alkaline phosphatase and type X collagen. Both DN-BMPR-II–expressing US and LS chondrocytes failed to respond to treatment with BMP-2 . When we examined the effects of DN forms of types IA and IB BMP receptors, we found that DN-BMPR-IA had little effect, while DN-BMPR-IB had similar but weaker effects compared with those of DN-BMPR-II. We conclude that BMP signaling, particularly that mediated by the type II BMP receptor, is required for maintenance of the differentiated phenotype, control of cell proliferation, and expression of hypertrophic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号