首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. A. Hickey 《Genetica》1992,86(1-3):269-274
This paper summarizes some recent theories about the evolution of transposable genetic elements in outbreeding, sexual eukaryotic organisms. The evolutionary possibilities available to self-replicating transposable elements are shown to vary depending on the reproductive biology of the host genome. This effect can be used to explain, in part, the differences in abundance of transposable elements between prokaryotes and eukaryotes. It is argued that the pattern of sexual outbreeding seen in mammals and plants is especially favorable to the spread of transposons. Moreover, because transposon spread is facilitated by zygote formation, the evolutionary origin of sexual conjugation may have been due to selection on transposon-encoded genes. Finally, evidence is also presented that introns could have originated as transposable genetic elements.  相似文献   

2.
3.
Site-specific selfish genes exploit host functions to copy themselves into a defined target DNA sequence, and include homing endonuclease genes, group II introns and some LINE-like transposable elements. If such genes can be engineered to target new host sequences, then they can be used to manipulate natural populations, even if the number of individuals released is a small fraction of the entire population. For example, a genetic load sufficient to eradicate a population can be imposed in fewer than 20 generations, if the target is an essential host gene, the knockout is recessive and the selfish gene has an appropriate promoter. There will be selection for resistance, but several strategies are available for reducing the likelihood of it evolving. These genes may also be used to genetically engineer natural populations, by means of population-wide gene knockouts, gene replacements and genetic transformations. By targeting sex-linked loci just prior to meiosis one may skew the population sex ratio, and by changing the promoter one may limit the spread of the gene to neighbouring populations. The proposed constructs are evolutionarily stable in the face of the mutations most likely to arise during their spread, and strategies are also available for reversing the manipulations.  相似文献   

4.
Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.  相似文献   

5.
6.
The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.  相似文献   

7.
A general model for the evolution of nuclear pre-mRNA introns   总被引:5,自引:0,他引:5  
We present an overview of the evolution of eukaryotic split gene structure and pre-mRNA splicing mechanisms. We have drawn together several seemingly conflicting ideas and we show that they can all be incorporated in a single unified theory of intron evolution. The resulting model is consistent with the notion that introns, as a class, are very ancient, having originated in the "RNA world"; it also supports the concept that introns may have played a crucial role in the construction of many eukaryotic genes and it accommodates the idea that introns are related to mobile insertion elements. Our conclusion is that introns could have a profound effect on the course of eukaryotic gene evolution, but that the origin and maintenance of intron sequences depends, largely, on natural selection acting on the intron sequences themselves.  相似文献   

8.

Background

An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.

Methodology/Principal Findings

To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (∼600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.

Conclusions/Significance

This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.  相似文献   

9.
Gudlaugsdottir S  Boswell DR  Wood GR  Ma J 《Genetica》2007,131(3):299-306
Since it was first recognised that eukaryotic genes are fragmented into coding segments (exons) separated by non-coding segments (introns), the reason for this phenomenon has been debated. There are two dominant theories: that the piecewise arrangement of genes allows functional protein domains, represented by exons, to recombine by shuffling to form novel proteins with combinations of functions; or that introns represent parasitic DNA that can infest the eukaryotic genome because it does not interfere grossly with the fitness of its host. Differing distributions of exon lengths are predicted by these two theories. In this paper we examine distributions of exon lengths for six different organisms and find that they offer empirical evidence that both theories may in part be correct.  相似文献   

10.

Background

It is widely accepted that the last eukaryotic common ancestor and early eukaryotes were intron-rich and intron loss dominated subsequent evolution, thus the presence of only very few introns in some modern eukaryotes must be the consequence of massive loss. But it is striking that few eukaryotes were found to have completely lost introns. Despite extensive research, the causes of massive intron losses remain elusive. Actually the reverse question -- how the few introns can be retained under the evolutionary selection pressure of intron loss -- is equally significant but was rarely studied, except that it was conjectured that the essential functions of some introns prevent their loss. The situation that extremely few (eight) spliceosome-mediated cis-spliced introns present in the relatively simple genome of Giardia lamblia provides an excellent opportunity to explore this question.

Results

Our investigation found three types of distribution patterns of the few introns in the intron-containing genes: ancient intron in ancient gene, later-evolved intron in ancient gene, and later-evolved intron in later-evolved gene, which can reflect to some extent the dynamic evolution of introns in Giardia. Without finding any special features or functional importance of these introns responsible for their retention, we noticed and experimentally verified that some intron-containing genes form sense-antisense gene pairs with transcribable genes on their complementary strands, and that the introns just reside in the overlapping regions.

Conclusions

In Giardia’s evolution, despite constant evolutionary selection pressure of intron loss, intron gain can still occur in both ancient and later-evolved genes, but only a few introns are retained; at least the evolutionary retention of some of the introns might not be due to the functional constraint of the introns themselves but the causes outside of introns, such as the constraints imposed by other genomic functional elements overlapping with the introns. These findings can not only provide some clues to find new genomic functional elements -- in the areas overlapping with introns, but suggest that “functional constraint” of introns may not be necessarily directly associated with intron loss and gain, and that the real functions are probably still outside of our current knowledge.

Reviewers

This article was reviewed by Mikhail Gelfand, Michael Gray, and Igor Rogozin.
  相似文献   

11.
12.
Bhattacharya  D.  Lutzoni  F.  Reeb  V.  Simon  D.  Fernandez  F.  & Friedl  T. 《Journal of phycology》2000,36(S3):6-7
Ribosomal DNA genes in lichen algae and lichen fungi are astonishingly rich in spliceosomal and group I introns. We use phylogenetic, secondary structure, and biochemical analyses to understand the evolution of these introns. Despite the widespread distribution of spliceosomal introns in nuclear pre-mRNA genes, their general mechanism of origin remains an open question because few proven cases of recent and pervasive intron origin have been documented. The lichen introns are valuable in this respect because they are undoubtedly of a "recent" origin and limited to the Euascomycetes. Our analyses suggest that rDNA spliceosomal introns have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into r RNAs. We propose that the spliceosome itself (and not an external agent; e.g. transposable elements, group II introns) has given rise to the introns. The rDNA introns are found most often between the flanking sequence G (78%) - intron-G (72%), and their clustered positions on secondary structures suggest that particular r RNA regions are preferred sites (i.e., proto-splice sites) for insertion. Mapping of intron positions on the newly available tertiary structures show that they are found most often in exposed regions of the ribosomes. This again is consistent with an intron origin through reverse-splicing. Remarkably, the distribution and phylogenetic relationships of most group I introns in nuclear rDNA genes are also consistent with a reverse-splicing origin. These data underline the value of lichens as a model system for understanding intron origin and stress the importance of RNA-level processes in the spread of these sequences in nuclear coding regions.  相似文献   

13.
果蝇转座因子对基因组进化的影响   总被引:2,自引:0,他引:2  
真核生物基因组织有很多可移动DNA片段为称转座因子,果蝇是大量系统研究的最好实验材料之一,其基因组的10%-12%是由转座因子组成,在宿主中,TEs也许改变基因表达模型,也许改变ORFs编码序列,也许对细胞功能产生影响,这此因子遗传的可动性也可能使它们适于建造载体产生转基因生物。因此,对TEs进化的动态研究以及对宿主基因组进化影响的探索将有助于TEs作为载体的细胞工程研究。  相似文献   

14.
15.
16.
17.
植物基因组大小进化的研究进展   总被引:4,自引:0,他引:4  
陈建军  王瑛 《遗传》2009,31(5):464
不同的真核生物之间基因组大小差异很大, 并与生物体复杂性不相关, 在基因组中存在大量的非编码DNA序列是造成这种差异的主要原因, 特别是转座子序列。文章综述了植物基因组大小差异以及引起这种差异的主要进化动力的最新研究进展。植物基因组多倍化和转座子积累是导致基因组增大的主要动力, 而同源不平等重组和非正规重组则是驱动基因组DNA丢失的潜在动力, 以制约基因组无限制地增大。文中还讨论了植物基因组大小进化方向, 即总体趋势是朝着增大的方向进化, 某些删除机制主要是削弱这种增大作用但不能逆转。  相似文献   

18.
As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.  相似文献   

19.
20.
This paper presents a compact model of the role of transposable elements in eucaryote evolution which, although forward looking, is consistent with both experimental results and theories of gene regulation. The model postulates that a principal factor in the emergence of the eucaryotes was the development of a symbiotic relationship between reverse transcribing transposable elements and RNA based gene regulation, which we will call structural symbiosis. Thus, although transposable elements follow their own evolutionary protocol, structural homologies between "cellular" and "viral" genomes result in selective mutagenesis, a situation where transposon mutations are permitted because they can result in phenotypic mutations of the regulatory process with reduced probability of deleterious mutation of structural genes. The incorporation of this scheme into the life cycle of higher organisms results in two forms of integral evolution. Exogenous, in which differing species in an ecosystem share genetic information through viral transfer, and endogenous in which somatically induced regulatory mutations can be mapped back into the germ line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号