首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have measured ryanodine (caffeine)-sensitive 45Ca2+ release from isolated microsomal vesicles of endoplasmic reticulum prepared from rat parotid acinar cells. After a steady state of ATP-dependent 45Ca2+ uptake, the addition of caffeine (40 mm), ryanodine (10∼500 μm) or an NAD+ metabolite, cyclic ADP-ribose (cADPR, 4 μm) released about 10% of the 45Ca2+ that had been taken up. The 45Ca2+ release was not inhibited by heparin, an antagonist of IP3 receptor. The effects of caffeine, ryanodine and cADPR on 45Ca2+ release were also tested in the presence of thapsigargin (TG), an inhibitor of microsomal Ca2+-ATPase. When caffeine (10∼40 mm), ryanodine (10 μm) or cADPR (1∼10 μm) was added in the medium with 100 nm TG, a significant 45Ca2+ release was seen, while higher concentrations of ryanodine (>100 μm) did not cause any 45Ca2+ release in the presence of TG. The initial rate of caffeine (40 mm)-induced 45Ca2+ release was increased by a pretreatment with 10 μm ryanodine, whereas the caffeine-induced 45Ca2+ release was strongly inhibited by the presence of a higher concentration (500 μm) of ryanodine. cADPR-induced 45Ca2+ release was also inhibited by 500 μm ryanodine. Caffeine (40 mm)- or cADPR (4 μm)-induced 45Ca2+ release was abolished by a presence of ruthenium red (50∼100 μm). The presence of a low concentration (0.5 μm) of cADPR shifted the dose-response curve of caffeine-induced 45Ca2+ release to the left. These results indicate the presence of a ryanodine sensitive Ca2+ release mechanism in the endoplasmic reticulum of rat parotid acinar cells that is distinct from the IP3-sensitive Ca2+ channel and is activated by caffeine, cADPR and a low concentration (10 μm) of ryanodine, but is inhibited by higher concentrations (>100 μm) of ryanodine and ruthenium red. The properties of the ryanodine-sensitive mechanism are similar to that of the ryanodine receptor as described in muscle cells. Received: 11 June 1996/Revised: 14 November 1996  相似文献   

2.
Single channel and [3H]ryanodine binding measurements were performed to test for a direct functional interaction between 2,3-butanedione 2-monoxime (BDM) and the skeletal and cardiac muscle sarcoplasmic reticulum Ca2+ release channels (ryanodine receptors). Single channel measurements were carried out in symmetric 0.25 m KCl media using the planar lipid bilayer method. BDM (1–10 mm) activated suboptimally Ca2+-activated (0.5–1 μm free Ca2+) single, purified and native cardiac and skeletal release channels in a concentration-dependent manner by increasing the number of channel events without a change of single channel conductances. BDM activated the two channel isoforms when added to either side of the bilayer. At a maximally activating cytosolic Ca2+ concentration of 20 μm, BDM was without effect on the cardiac channel, whereas it inhibited skeletal channel activities with IC50≈ 2.5 mm. In agreement with single channel measurements, high-affinity [3H]ryanodine binding to the two channel isoforms was increased in a concentration-dependent manner at ≤1 μm Ca2+. BDM was without a noticeable effect at low (≤0.01 μm) Ca2+ concentrations. At 20 μm Ca2+, BDM inhibited the skeletal but not cardiac channel. These results suggest that BDM regulates the Ca2+ release channels from the sarcoplasmic reticulum of skeletal and cardiac muscle in a concentration, Ca2+ and tissue-dependent manner. Received: 31 December 1998/Revised: 9 March 1999  相似文献   

3.
Endothelins are known to be among the most potent endogenous vasoconstrictors. Vasoconstriction of the spiral modiolar artery, which supplies the cochlea, may be implicated in hearing loss and tinnitus. The purpose of the present study was to determine whether the spiral modiolar artery responds to endothelin, whether a change in the cytosolic Ca2+ concentration ([Ca2+]i) mediates the response and which endothelin receptors are present. The vascular diameter and [Ca2+]i were measured simultaneously by videomicroscopy and microfluorometry in the isolated spiral modiolar artery from the gerbil. ET-1 induced a transient [Ca2+]i increase and a strong and long-lasting vasoconstriction. The transient [Ca2+]i increase underwent rapid desensitization, was independent of extracellular Ca2+ and inhibited by the IP3-receptor blocker (75 μm) 2-aminoethoxydiphenyl borate (2-APB) and by depletion of Ca2+ stores with 10−6 m thapsigargin. In contrast, the vasoconstriction displayed no comparable desensitization. The initial vasoconstriction was independent of extracellular Ca2+ but maintenance of the constriction depended on the presence of extracellular Ca2+. The half-maximal concentration values (EC 50) for the agonists ET-1, ET-3 and sarafotoxin S6c were 0.8 nm, >10 nm and >100 nm, respectively. Affinity constants for the antagonists BQ-123 and BQ-788 were 24 nm and 77 nm, respectively. These observations demonstrate that ET-1 mediates a vasoconstriction of the gerbil spiral modiolar artery via ETA receptors and an IP3 receptor-mediated release of Ca2+ from thapsigargin-sensitive Ca2+ stores. The marked difference in desensitization between Ca2+ mobilization and vasoconstriction suggests that Ca2+ mobilization is not solely responsible for the vasoconstriction and that other signaling mechanisms must be present. Received: 4 January 2001/Revised: 23 April 2001  相似文献   

4.
Muscarinic m3 receptor-mediated changes in cytosolic Ca2+ concentration ([Ca2+]l) occur by activation of Ca2+ release channels present in the endoplasmic reticulum membrane and Ca2+ entry pathways across the plasma membrane. In this report we demonstrate the coupling of m3 muscarinic receptors to the activation of a voltage-insensitive, cation-selective channel of low conductance (3.2 ± 0.6 pS; 25 mm Ca2+ as charge carrier) in a fibroblast cell line expressing m3 muscarinic receptor clone (A9m3 cells). Carbachol (CCh)-induced activation of the cation-selective channel occurred both in whole cell and excised membrane patches (CCh on the external side), suggesting that the underlying mechanism involves receptor-channel coupling independent of intracellular messengers. In excised inside-out membrane patches from nonstimulated A9m3 cells GTP (10 μm) and GDP (10 μm) activated cation-selective channels with conductances of approximately 4.3 and 3.3 pS, (25 mm Ca2+ as charge carrier) respectively. In contrast, ATP (10 μm), UTP (10 μm) or CTP (10 μm) failed to activate the channel. Taken together, these results suggest that carbachol and guanine nucleotides regulate the activation of a cation channel that conducts calcium. Received: 14 November 1996/Revised: 4 April 1997  相似文献   

5.
The relationship between relative cell volume and time-dependent changes in intracellular Ca2+ concentration ([Ca2+] i ) during exposure to hypotonicity was characterized in SV-40 transformed rabbit corneal epithelial cells (tRCE) (i). Light scattering measurements revealed rapid initial swelling with subsequent 97% recovery of relative cell volume (characteristic time (τ vr ) was 5.9 min); (ii). Fura2-fluorescence single-cell imaging showed that [Ca2+] i initially rose by 216% in 30 sec with subsequent return to near baseline level after another 100 sec. Both relative cell volume recovery and [Ca2+] i transients were inhibited by either: (a) Ca2+-free medium; (b) 5 mm Ni2+ (inhibitor of plasmalemma Ca2+ influx); (c) 10 μm cyclopiazonic acid, CPA (which causes depletion of intracellular Ca2+ content); or (d) 100 μm ryanodine (inhibitor of Ca2+ release from intracellular stores). To determine the temporal relationship between an increased plasmalemma Ca2+ influx and the emptying of intracellular Ca2+ stores during the [Ca2+] i transients, Mn2+ quenching of fura2-fluorescence was quantified. In the presence of CPA, hypotonic challenge increased plasmalemma Mn2+ permeability 6-fold. However, Mn2+ permeability remained unchanged during exposure to either: 1.100 μm ryanodine; 2.10 μm CPA and 100 μm ryanodine. This report for the first time documents the time dependence of the components of the [Ca2+] i transient required for a regulatory volume decrease (RVD). The results show that ryanodine sensitive Ca2+ release from an intracellular store leads to a subsequent increase in plasmalemma Ca2+ influx, and that both are required for cells to undergo RVD. Received: 7 November 1996/Revised: 6 January 1997  相似文献   

6.
We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+] i ) with peak of 422.7 ± 43.8 nm above an average resting [Ca2+] i of 104.8 ± 10.9 nm (n= 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+] i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+] i recovery was either abolished or reduced to ≤15% of control values. In contrast, no significant effect of gadolinium chloride (100 μm) or lanthanum chloride (25 μm) on either peak transient or prolonged [Ca2+] i recovery was observed. Pretreatment of cells with thapsigargin (1 μm) resulted in a 25% reduction of the mechanically induced peak [Ca2+] i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+] i transient peak. [Ca2+] i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 μm) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+] i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store. Received: 24 March 1997/Revised: 21 July 1997  相似文献   

7.
The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by μm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236–244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces P o by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 μm in cardiac RyRs or 1 μm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding. Received: 1 January 1996/Revised: 14 November 1996  相似文献   

8.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

9.
There is increasing evidence that Ca2+ release from sarcoplasmic reticulum (SR) of mammalian skeletal muscle is regulated or modified by several factors including ionic composition of the myoplasm. We have studied the effect of Cl on the release of Ca2+ from the SR of rabbit skeletal muscle in both skinned psoas fibers and in isolated terminal cisternae vesicles. Ca2+ release from the SR in skinned fibers was inferred from increases in isometric tension and the amount of release was assessed by integrating the area under each tension transient. Ca2+ release from isolated SR was measured by rapid filtration of vesicles passively loaded with 45Ca2+. Ca2+ release from SR was stimulated in both preparations by exposure to a solution containing 191 mm choline-Cl, following pre-equilibration in Ca2+-loading solution that had propionate as the major anion. Controls using saponin (50 μg/ml), indicated that the release of Ca2+ was due to direct action of Cl on the SR rather than via depolarization of T-tubules. Procaine (10 mm) totally blocked Cl- and caffeine-elicited tension transients recorded using loading and release solutions having ([Na+] + [K+]) × [Cl] product of 6487.69 mm 2 and 12361.52 mm 2, respectively, and blocked 60% of Ca2+ release in isolated SR vesicles. Surprisingly, procaine had only a minor effect on tension transients elicited by Cl and caffeine together. The data from both preparations suggests that Cl induces a relatively small amount of Ca2+ release from the SR by activating receptors other than RYR-1. In addition, Cl may increase the Ca2+ sensitivity of RYR-1, which would then allow the small initial release of Ca2+ to facilitate further release of Ca2+ from the SR by Ca2+-induced Ca2+ release. Received: 6 February 1996/Revised: 17 July 1996  相似文献   

10.
This combined study of patch-clamp and intracellular Ca2+ ([Ca2+] i ) measurement was undertaken in order to identify signaling pathways that lead to activation of Ca2+-dependent Cl channels in cultured rat retinal pigment epithelial (RPE) cells. Intracellular application of InsP3 (10 μm) led to an increase in [Ca2+] i and activation of Cl currents. In contrast, intracellular application of Ca2+ (10 μm) only induced transient activation of Cl currents. After full activation by InsP3, currents were insensitive to removal of extracellular Ca2+ and to the blocker of I CRAC, La3+ (10 μm), despite the fact that both maneuvers led to a decline in [Ca2+] i . The InsP3-induced rise in Cl conductance could be prevented either by thapsigargin-induced (1 μm) depletion of intracellular Ca2+ stores or by removal of Ca2+ prior to the experiment. The effect of InsP3 could be mimicked by intracellular application of the Ca2+-chelator BAPTA (10 mm). Block of PKC (chelerythrine, 1 μm) had no effect. Inhibition of Ca2+/calmodulin kinase (KN-63, KN-92; 5 μm) reduced Cl-conductance in 50% of the cells investigated without affecting [Ca2+] i . Inhibition of protein tyrosine kinase (50 μm tyrphostin 51, 5 μm genistein, 5 μm lavendustin) reduced an increase in [Ca2+] i and Cl conductance. In summary, elevation of [Ca] i by InsP3 leads to activation of Cl channels involving cytosolic Ca2+ stores and Ca2+ influx from extracellular space. Tyrosine kinases are essential for the Ca2+-independent maintenance of this conductance. Received: 15 October 1998/Revised: 3 March 1999  相似文献   

11.
Phospholamban (PLN) phosphorylation contributes largely to the inotropic and lusitropic effects of beta-adrenergic agonists on the heart. The mechanical effects of PLN phosphorylation on the heart are generally attributed solely to an increase in the apparent affinity of the Ca pump in the sarcoplasmic reticulum (SR) membranes for Ca2+ with little or no effect on V max(Ca). In the present report, we compare the kinetic properties of the cardiac SR Ca pump in commonly studied crude microsomes with those of our recently developed preparation of light SR vesicles. We demonstrate that in crude microsomes, the increase in the apparent affinity of the pump for Ca2+ is larger, while the increase in V max(Ca) is smaller, than in purified vesicles. The greater phosphorylation-induced increase in apparent Ca2+ affinity in crude microsomes may be further enhanced by an ATP-sensitive inhibitory effect of ruthenium red on the activity of the pump at subsaturating, but not saturating, Ca2+ concentrations as a result of a greater inhibition in unphosphorylated microsomes. Upon increasing the ATP concentration from 1 to 5 mm, an inhibition by 10 μm ruthenium red is eliminated in phosphorylated microsomes and reduced in control microsomes. Addition of the phosphoprotein phosphatase inhibitor okadaic acid produces a considerable increase in the phosphorylation-induced effects in both crude and purified microsomes. We conclude that the use of purified cardiac SR vesicles is critical for the demonstration of a major increase in V max(Ca) in addition to an increase in the pump's apparent affinity for Ca2+ in response to phosphorylation of PLN by protein kinase A. Received: 20 May 1998/Revised: 13 November 1998  相似文献   

12.
The modulation of the calmodulin-induced inhibition of the calcium release channel (ryanodine receptor) by two sulfhydryl oxidizing compounds, 4-(chloromercuri)phenyl–sulfonic acid (4-CMPS) and 4,4′-dithiodipyridine (4,4′-DTDP) was determined by single channel current recordings with the purified and reconstituted calcium release channel from rabbit skeletal muscle sarcoplasmic reticulum (HSR) and [3H]ryanodine binding to HSR vesicles. 0.1 μm CaM reduced the open probability (P o ) of the calcium release channel at maximally activating calcium concentrations (50–100 μm) from 0.502 ± 0.02 to 0.137 ± 0.022 (n= 28), with no effect on unitary conductance. 4-CMPS (10–40 μm) and 4,4′-DTDP (0.1–0.3 mm) induced a concentration dependent increase in P o (> 0.9) and caused the appearance of longer open states. CaM shifted the activation of the calcium release channel by 4-CMPS or 4,4′-DTDP to higher concentrations in single channel recordings and [3H]ryanodine binding. 40 μm 4-CMPS induced a near maximal (P o > 0.9) and 0.3 mm 4,4′-DTDP a submaximal (P o = 0.74) channel opening in the presence of CaM, which was reversed by the specific sulfhydryl reducing agent DTT. Neither 4-CMPS nor 4,4′-DTDP affected Ca-[125I]calmodulin binding to HSR. 1 mm MgCl2 reduced P o from 0.53 to 0.075 and 20–40 μm 4-CMPS induced a near maximal channel activation (P o > 0.9). These results demonstrate that the inhibitory effect of CaM or magnesium in a physiological concentration is diminished or abolished at high concentrations of 4-CMPS or 4,4′-DTDP through oxidation of activating sulfhydryls on cysteine residues of the calcium release channel. Received: 22 July 1999/Revised: 15 November 1999  相似文献   

13.
Using spectrofluorescence imaging of fura-2 loaded renal A6 cells, we have investigated the generation of the cytosolic Ca2+ signal in response to osmotic shock and localized membrane stretch. Upon hypotonic exposure, the cells began to swell prior to a transient increase in [Ca2+] i and the cells remained swollen after [Ca2+] i had returned towards basal levels. Exposure to 2/3rd strength Ringer produced a cell volume increase within 3 min, followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also produced a transient increase in [Ca2+] after a delay of 22 sec. Both the RVD and [Ca2+] i response to hypotonicity were inhibited in a Ca2+-free bathing solution and by gadolinium (10 μm), an inhibitor of stretch-activated channels. Stretching the membrane by application of subatmospheric pressure (-2 kPa) inside a cell-attached patch-pipette induced a similar global increase in [Ca2+] i as occurred after hypotonic shock. A stretch-sensitive [Ca2+] i increase was also observed in a Ca2+-free bathing solution, provided the patch-pipette contained Ca2+. The mechanosensitive [Ca2+] i response was by gadolinium (10 μm) or Ca2+-free pipette solutions, even when Ca2+ (2 mm) was present in the bath. Long-term (>10 min) pretreatment of the cells with thapsigargin inhibited the [Ca2+] i response to hypotonicity. These results provide evidence that cell swelling or mechanical stimulation can activate a powerful amplification system linked to intracellular Ca2+ release mechanisms. Received: 3 August 1998/Revised: 19 November 1998  相似文献   

14.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

15.
The putative role for Ca2+ entry and Ca2+ mobilization in the activation of the regulatory volume decrease (RVD) response has been assessed in Ehrlich cells. Following hypotonic exposure (50% osmolarity) there is: (i) no increase in cellular Ins(1,4,5)P3 content, as measured in extracts from [2-3H]myoinositol-labeled cells, a finding at variance with earlier reports from our group; (ii) no evidence of Ca2+-signaling recorded in a suspension of fura-2-loaded cells; (iii) Ca2+-signaling in only about 6% of the single, fura-2-loaded cells at 1-mm Ca2+ (1% only at 0.1-mm Ca2+ and in Ca2+-free medium), as monitored by fluorescence-ratio imaging; (iv) no effect of removing external Ca2+ upon the volume-induced K+ loss; (v) no significant inhibition of the RVD response in cells loaded with the Ca2+ chelator BAPTA when the BAPTA-loading is performed in K+ equilibrium medium; (vi) an inhibition of the swelling-induced K+ loss (about 50%) at 1-mm Ba2+, but almost no effect of charybdotoxin (100 nm) or of clotrimazole (10 μm), reported inhibitors of the K+ loss induced by Ca2+-mobilizing agonists. Thus, Ca2+signaling by Ca2+ release or Ca2+ entry appears to play no role in the activation mechanism for the RVD response in Ehrlich cells. Received: 8 December 1996/Revised: 14 January 1997  相似文献   

16.
The lipophilic fluorescent dye, FM1-43, as now frequently used to stain cell membranes and to monitor exo-endocytosis and membrane recycling, induces a cortical [Ca2+] i transient and exocytosis of dense core vesicles (``trichocysts') in Paramecium cells, when applied at usual concentrations (≤10 μm) in presence of extracellular Ca2+ ([Ca2+] o = 50 μm). When [Ca2+] o is kept at 30 nm (<[Ca2+]rest i ), in about one third of the population of extrudable trichocysts docked at the cell membrane, FM1-43 induces membrane fusion, visible by FM1-43 fluorescence of the vesicle membrane. However, in this system extrusion of secretory contents cannot occur in absence of any sufficient Ca2+ o . Upon readdition of Ca2+ o or some other appropriate Me2+ o at 90 μm, secretory contents can be released (complete exocytosis). Resulting ghosts formed in presence of Ca2+, Sr2+ or Mn2+ are vesicular, but when formed in presence of Mg2+, for reasons to be elucidated, they are tubular, though both types are endocytosed and lose their FM1-43 stain. In contrast, in presence of [Mg2+] o = 3 mm (which inhibits contents release), the exocytotic openings reseal and intact trichocysts with labeled membranes and with still condensed contents are detached from the cell surface (``frustrated exocytosis') within ∼15 min. They undergo cytoplasmic streaming and saltatory redocking, with a half-time of ∼35 min. During this time, the population of redocked trichocysts amenable to exocytosis upon a second stimulus increases with a half-time of ∼35 min. Therefore, acquirement of competence for exocytotic membrane fusion may occur with only a small delay after docking, and this maturation process may last only a short time. A similar number of trichocysts can be detached by merely increasing [Mg2+] o to 3 mm, or by application of the anti-calmodulin drug, R21547 (calmidazolium). Essentially we show (i) requirement of calmodulin and appropriate [Me2+] to maintain docking sites in a functional state, (ii) requirement of Ca2+ o or of some other Me2+ o to drive membrane resealing during exo-endocytosis, (iii) requirement of an ``empty' signal to go to the regular endocytotic pathway (with fading fluorescence), and (iv) occurrence of a ``filled' signal for trichocysts to undergo detachment and redocking (with fluorescence) after ``frustrated exocytosis'. Received: 20 January 2000/Revised: 5 May 2000  相似文献   

17.
We identified a Ca2+-sensitive cation channel in acutely dissociated epithelial cells from the endolymphatic sac (ES) of guinea pigs using the patch-clamp technique. Single-channel recordings showed that the cation channel had a conductance of 24.0 ± 1.3 pS (n= 8) in our standard solution. The relative ionic permeability of the channel was in the order K+= Na+ > Ca2+≫ Cl. This channel was weakly voltage-dependent but was strongly activated by Ca2+ on the cytosolic side at a concentration of around 1 mm in inside-out excised patches. With cell-attached patches, however, the channel was activated by much lower Ca2+ concentrations. Treatment of the cells, under cell-attached configuration, with ionomycin (10 μm), carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 20 μm), or ATP (1 mm), which increased intracellular Ca2+ concentration ([Ca2+]i), activated the channel at an estimated [Ca2+]i from 0.6 μm to 10 μm. It is suggested that some activators of the channel were deteriorated or washed out during the formation of excised patches. Based on this Ca2+ sensitivity, we speculated that the channel contributes to the regulation of ionic balance and volume of the ES by absorbing Na+ under certain pathological conditions that will increase [Ca2+]i. This is the first report of single-channel recordings in endolymphatic sac epithelial cells. Received: 24 October 2000/Revised: 10 April 2001  相似文献   

18.
Interactions between the reactive disulfide fungal metabolite, gliotoxin (GTX), and rabbit skeletal ryanodine receptor (RyR) calcium release channels have been examined. RyRs in terminal cisternae vesicles formed a covalent complex with 100 μm 35S-GTX, which was reversed by 1 mm dithiothreitol (DTT) or 1 mm glutathione. GTX (80–240 μm), added to either cytoplasmic (cis) or luminal (trans) solutions, increased the rate of Ca2+ release from SR vesicles and the frequency of opening of single RyR channels in lipid bilayers. Channel activation was reversed upon addition of 2 mm DTT to the cis solution, showing that the activation was due to an oxidation reaction (2 mm DTT added to the cis solution in the absence of GTX did not affect RyR activity). Furthermore, RyRs were not activated by trans GTX if the cis chamber contained DTT, suggesting that GTX oxidized a site in or near the membrane. In contrast to cis DTT, 2 mm DTT in the trans solution increased RyR activity when added either alone or with 200 μm trans GTX. The results suggest that (i) GTX increases RyR channel activity by oxidizing cysteine residues that are close to the membrane and located on RyR, or associated proteins, and (ii) a disulfide bridge or nitrosothiol, accessible only from the luminal solution, normally suppresses RyR channel activity. Some of the actions of GTX in altering Ca2+ homeostatsis might depend on its modification of RyR calcium channels. Received: 12 November 1999/Revised: 14 March 2000  相似文献   

19.
We have characterized a Ca2+-dependent Cl current (ClCa) in cultured Sertoli cells from immature rat testis by using the whole cell recording patch-clamp technique. Cells dialyzed with pipette solutions containing 3 mm adenoside-triphosphate (ATP) and 1 μm free Ca2+, exhibited outward currents which were inhibited by 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and anthracene-9-carboxylic acid (9-AC) but insensitive to tetraethylammonium (TEA). Dialysis of cells with pipette solutions containing less than 1 nm free Ca2+ strongly reduced the currents indicating that they were Ca2+ dependent. With cells dialyzed with Cs+ glutamate-rich pipette solutions containing 0.2 mm EGTA, 10 μm ionomycin induced outward currents having properties of Ca2+-activated Cl currents. With ATP-free pipette solution, the magnitude of currents was not modified suggesting the direct control by Ca2+. By contrast, addition of 0.1 mm cAMP in the pipette solution or the superfusion of cells by a permeant analogue of cAMP strongly reduced the currents. These results may suggest that ClCa is inhibited by cAMP-dependent protein kinase. Finally, our results do not agree with the model of primary fluid secretion by exocrine cells, but are in agreement with a hyperpolarizing effect of cAMP in primary culture of Sertoli cells and the release of a low Cl and bicarbonate-rich primary fluid by these cells. Received: 30 November 1998/Revised: 2 March 1999  相似文献   

20.
In cystic fibrosis airway epithelia, mutation of the CFTR protein causes a reduced response of Cl secretion to secretagogues acting via cAMP. Using a Ca2+ imaging system, the hypothesis that CFTR activation may permit ATP release and regulate [Ca2+] i via a receptor-mediated mechanism, is tested in this study. Application of external nucleotides produced a significant increase in [Ca2+] i in normal (16HBE14o cell line and primary lung culture) and in cystic fibrosis (CFTE29o cell line) human airway epithelia. The potency order of nucleotides on [Ca2+] i variation was UTP ≫ ATP > UDP > ADP > AMP > adenosine in both cell types. The nucleotide [Ca2+] i response could be mimicked by activation of CFTR with forskolin (20 μm) in a temperature-dependent manner. In 16HBE14o cells, the forskolin-induced [Ca2+] i response increased with increasing temperature. In CFTE29o cells, forskolin had no effect on [Ca2+] i at body temperature-forskolin-induced [Ca2+] i response in CF cells could only be observed at low experimental temperature (14°C) or when cells were cultured at 26°C instead of 37°C. Pretreatment with CFTR channel blockers glibenclamide (100 μm) and DPC (100 μm), with hexokinase (0.5 U/mg), and with the purinoceptor antagonist suramin (100 μm), inhibited the forskolin [Ca2+] i response. Together, these results demonstrate that once activated, CFTR regulates [Ca2+] i by mediating nucleotide release and activating cell surface purinoceptors in normal and CF human airway epithelia. Received: 3 April 2000/Revised: 30 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号