首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
真养产碱菌利用甜菜糖蜜发酵产聚β-羟基丁酸的研究   总被引:1,自引:0,他引:1  
探讨了以廉价原料甜菜糖蜜培养真养产碱菌(Alcaligeneseutrophus)H16生产聚β-羟基丁酸(PHB)的可行性。对培养基优化试验表明,菌体产量可达20g/L,PHB产量达9.8g/L,糖转化率为27.5%。用2升自控发酵罐进行验证,在良好的供氧条件和特定的pH值自控条件下发酵周期从48小时缩短到40-42小时,菌体和PHB量都有提高。菌体最高产量26g/L,PHB最高产量13g/L,糖转化率为20.4%。PHB占细胞的含量,摇瓶和罐上结果都在50%左右。  相似文献   

2.
高产稳产聚羟基烷酸的重组大肠杆菌的构建   总被引:7,自引:0,他引:7  
重组大肠杆菌Escherichia coliHMS174(pTZ18UPHB) 含有携带聚羟基烷酸(PHA) 合成基因( phaCAB)** 的质粒pTZ18UPHB,是很有潜力的PHA 生产菌,但存在着质粒不稳定和不能合成3羟基丁酸(3HB) 与3羟基戊酸(3HV) 共聚物[P(3HBco3HV)] 的缺陷。将RK2 质粒上的par DE 基因引入pTZ18UPHB 构成质粒pJMC2 ,该质粒可以在宿主E.ColiHMS174 中稳定遗传。将培养基中的磷酸盐浓度降至18 m mol/L,发现E.Coli HMS174(pJMC2) 能够以丙酸为前体合成P(3HBco3HV) ,其中3HV 在共聚物中的含量为5 % ~8 % 。在5L自动发酵罐中分批补料培养E.Coli HMS174(pJMC2) ,培养基初始磷酸盐浓度为15 m mol/L,30 h 后每升培养液中干菌体可达42-5 g,P(3HBco3HV) 占干重的70 % ,其中3HV 在共聚物中的含量为4-9 % 。  相似文献   

3.
真养产碱杆菌突变株65-7产聚-β-羟基丁酸的研究   总被引:2,自引:0,他引:2  
本文对真养产碱杆菌突变株65-7在台式2L发酵罐中利用葡萄糖积累PHB进行了碳源和氮源补料分批培养的研究。结果表明72h发酵液中细胞干重达50g/L,PHB占细胞干重的77%,糖对PHB的转化率为25%。制得的PHB产品纯度与Sigma公司的相当,熔点174℃。  相似文献   

4.
易祖华  陈东 《微生物学通报》1995,22(1):29-31,13
本文对真养产碱杆菌突变株65-7在台式2L发酵罐中利用葡萄糖积累PHB进行了碳源和氮源补料分批培养的研究。结果表明72h发酵液中细胞干重达50g/L,PHB占细胞干重的77%,糖对PHB的转化率为25%。制得的PHB产品纯度与Sigma公司的相当,熔点174℃  相似文献   

5.
在研究真养产碱杆菌WSH3一级连续培养动力学的基础上,采用二级连续培养系统对不同稀释率下聚β羟基丁酸的生产进行了研究。结果表明:在一级连续培养系统中,当稀释率为021h-1时,细胞干重最大值达271g/L;二级培养系统中,稀释率为014h-1时细胞干重最大值为476g/L;在稀释率为012h-1时,PHB的生产强度达到最大值为250g/(L·h),但胞内PHB含量仅为476%;在稀释率为0075h-1时,产物对基质的转化率达到最大值为038g/g,此时PHB的生产强度达214g/(L·h)和胞内PHB含量±721%;随着细胞比生长速率的增长,细胞中PHB含量和单位菌体合成PHB的量不断下降。  相似文献   

6.
在摇瓶条件下,对真养产碱杆菌(Alcaligeneseutrophus)的3羟基丁酸与3羟基戊酸共聚物(PHBV)发酵过程中HV组分的前体物质———丙酸的加入时间和加入量进行了研究,结果表明,PHBV中HV组分含量与丙酸的加入时间和加入量有密切的关系,丙酸的最佳加入时间为菌体生长阶段结束后的多聚物合成初期;尽管高浓度丙酸下可获得较高的HV组分含量,但会明显抑制菌体的生长和产物的合成。通过对2L小罐中PHBV合成阶段流加不同糖/酸比混合液所得的发酵结果的比较,并在综合考虑PHBV浓度、HV组分含量、生产强度和生产成本等基础上,提出了在PHBV合成期流加液的糖/酸比应随菌体对丙酸利用能力的下降而不断增加的流加策略,在此条件下,细胞干重、PHBV浓度和PHBV含量和HV摩尔分率分别达到521g/L、408g/L、783%和162mol%,HV组分对丙酸的产率系数为05g/g,PHBV的生产强度达到074g/(L/h)。  相似文献   

7.
研究了真养产碱杆菌突变株65-7,以葡萄糖为主原料,添加丙酸或戊酸,采用二步发酵积累共聚物聚β-羟基丁酸-β-羟基戊酸(PHBV)。摇瓶总发酵时间为50h,细胞干重达7-11g/L,共聚物含量占细胞干重的70%以上,其中β-羟基戊酸(3HV)含量占PHBV的10-72%,主要取决于不同碳源的组成,丙酸和戊酸对HV的转化率分别为0.41-0.63gHV/g丙酸和0.40-0.74gHV/g戊酸,制得的PHBV产品纯度99%以上,分子量6.9×105相似文献   

8.
芽孢杆菌M_(50)产生β甘露聚糖酶的条件研究   总被引:3,自引:0,他引:3  
从土壤中分离到9 株产生β甘露聚糖酶的芽孢杆菌( Bacillus sp .) 。Bacillussp . M50250m L三角瓶摇瓶培养试验,以4 % 的魔芋粉为碳源,1-0 % ( NH4)2SO4 为氮源,0-35 %Na2CO3 ,30 ~34 ℃培养60h 产酶达到高峰。酶活力为180 ~200u/m L。100L 罐发酵,在30 ~32 ℃,1∶0 .75vvm 通气量,200r/min 条件下,发酵液酶活力高达330u/m L。酶的最适反应温度和pH 分别为50 ℃和6-0 ,低于50 ℃,pH5 .0 ~7 .0 酶稳定。Fe3+ 、Al3+ 、EDTA、Hg2+ 对酶有抑制作用,而Ba2+ 、Mn2+ 对酶有激活作用。发酵粗酶液对苎麻精干麻精练,显示对精干麻的半纤维素残胶具有降解作用。  相似文献   

9.
对聚β-羟基丁酸(PHB)产生菌Z5-GⅡ的发酵培养基及发酵条件进行优化研究;结果表明:该菌株在蔗糖1%,酵母粉0.3%,酵母浸汁0.3%,K2HPO40.2%;pH7.2 ̄7.4的优化发酵培养基中,接种量8%,种28h,发酵培养36h,细胞干重为6.87g/L,PHB产率可达的细胞干重的61.86%。该菌株还可利用葡萄糖生产废液为碳源生产PHB,具有实现工业化生产的潜力。  相似文献   

10.
研究了真养产碱杆菌突变株65-7,以葡萄糖为主原料,添加丙酸或戊酸,采用二步发酵积累共聚物聚β-羟基丁酸-β-羟基戊酸(PHBV)。摇瓶总发酵时间为50h,细胞干重达7-11g/L,共聚物含量占细胞干重的70%以上,其中β-羟基戊酸(3HV0含量占PHBV的10-72%,主要取决于不同碳源的组成,丙酸和戊酸对HV的转化率分别为0.41-0.63gHV/g丙酸和0.40-0.74gHV/g戊酸,制得  相似文献   

11.
Alcaligenes latus, a growth-associated PHB producer, was cultivated by a pH-stat modal fed-batch culture technique to attain high PHB productivity. Both sucrose solution and inorganic medium were fed in conjunction with the supply of ammonia solution which serves as a nitrogen source and as a means of pH control. Compositions of the inorganic medium were formulated by elemental analysis of A. latus cell mass. The effect on inoculum size was examined to reduce culture time. High concentrations of cell (142 g/L) and PHB (68.4 g/L) were obtained in a short culture time (18 h) with an inoculum size of 13.7 g/L. The PHB content and the PHB productivity at the end of the fed-batch culture were 50% of dry cell weight and 4.0 g PHB/(L . h), respectively. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
The addition of poly(ethylene glycol) (Mn = 200 g/mol) (PEG-200) to the fermentation media of Alcaligenes eutrophus and Alcaligenes latus at various stages of growth resulted in the synthesis of poly(3-hydroxybutyrate) (PHB) with bimodal molecular weight distributions. The presence of 2% w/v-PEG-200 did not have deleterious effects on PHB volumetric yields and cell productivity. In general, the Mn values of the high (H) and low (L) fractions showed little variability as a function of the time at which PEG-200 was added to the cultures. By this approach, the H:L ratios (w/w) of the PHB synthesized by A. eutrophus and A. latus were varied from 9:91 to 76:24 and from 16:84 to 88:12, respectively. It is believed that the H fractions were formed prior to the addition of PEG-200 to the cultures. Also, once PEG-200 was made available to the cells, PEG-200 acted as a switch so that the reduced molecular weight fraction was formed. In addition, a necessary requirement for the above is that the frequency of transesterification reactions during polymer synthesis was small. The efficiency that PEG-200 reduced the molecular weight of the PHBs formed by both bacteria appears similar. Indirect evidence suggests that the PHB L fractions formed by A. latus subsequent to PEG-200 addition consist primarily of chains that have PEG terminal groups. This terminal chain structure was not observed for PHB formed by A. eutrophus.  相似文献   

13.
Alcaligenes latus has been known to produce poly(3-hydroxybutyrate) (PHB) in a growth-associated manner even under nutrient-sufficient conditions. However, the PHB content obtained by fed-batch culture was always low, at ca. 50%, which makes the recovery process inefficient. In this study, the effect of applying nitrogen limitation on the production of PHB by A. latus was examined. In flask and batch cultures, the PHB synthesis rate could be increased considerably by applying nitrogen limitation. The PHB content could be increased to 87% by applying nitrogen limitation in batch culture, which was considerably higher than that typically obtainable (50%) under nitrogen-sufficient conditions. In fed-batch culture, cells were first cultured by the DO-stat feeding strategy without applying nitrogen limitation. Nitrogen limitation was applied at a cell concentration of 76 g (dry cell weight)/liter, and the sucrose concentration was maintained within 5 to 20 g/liter. After 8 h of nitrogen limitation, the cell concentration, PHB concentration, and PHB content reached 111.7 g (dry cell weight)/liter, 98.7 g/liter, and 88%, respectively, resulting in a productivity of 4.94 g of PHB/liter/h. The highest PHB productivity, 5.13 g/liter/h, was obtained after 16 h.  相似文献   

14.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

15.
Alcaligenes eutrophus NCIMB 11599 was cultivated to produce poly(3-hydroxybutyric acid) (PHB) from glucose by the automatic fed-batch culture technique. The glucose concentration of the culture broth was controlled at 10 to 20 g/L by two methods: using exit gas data obtained from a mass spectrometer and using an on-line glucose analyzer. The effect of ammonium limitation on PHB synthesis at different culture phases was studied. The final cell concentration, PHB concentration, and PHB productivity increased as ammonia feeding was stopped at a higher cell concentration. High concentrations of PHB (121 g/L) and total cells (164 g/L) were obtained in 50 h when ammonia feeding was stopped at the cell concentration of 70 g/L. The maximum PHB content reached 76% of dry cell weight and the productivity was 2.42 g/L h with the yield of 0.3 g PHB/g glucose.  相似文献   

16.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

17.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

18.
Poly(3-hydroxybutyrate) (PHB) was produced by cultivating several gram-negative bacteria, including Ralstonia eutropha, Alcaligenes latus, and recombinant Escherichia coli. PHB was recovered from these bacteria by two different methods, and the endotoxin levels were determined. When PHB was recovered by the chloroform extraction method, the endotoxin level was less than 10 endotoxin units (EU) per g of PHB irrespective of the bacterial strains employed and the PHB content in the cell. The NaOH digestion method, which was particularly effective for the recovery of PHB from recombinant E. coli, was also examined for endotoxin removal. The endotoxin level present in PHB recovered by 0.2 N NaOH digestion for 1 h at 30 degrees C was higher than 10(4) EU/g of PHB. Increasing the digestion time or NaOH concentration reduced the endotoxin level to less than 1 EU/g of PHB. It was concluded that PHB with a low endotoxin level, which can be used for various biomedical applications, could be produced by chloroform extraction. Furthermore, PHB with a much lower endotoxin level could be produced from recombinant E. coli by simple NaOH digestion.  相似文献   

19.
An unsterile and continuous fermentation process was developed based on a halophilic bacterium termed Halomonas TD01 isolated from a salt lake in Xinjiang, China. The strain reached 80 g/L cell dry weight containing 80% poly(3-hydroxybutyrate) (PHB) on glucose salt medium during a 56 h fed-batch process. In a 14-day open unsterile and continuous process, the cells grew to an average of 40 g/L cell dry weight containing 60% PHB in the first fermentor with glucose salt medium. Continuous pumping of cultures from the first fermentor to the second fermentor containing the nitrogen-deficient glucose salt medium diluted the cells but allowed them to maintain a PHB level of between 65% and 70% of cell dry weight. Glucose to PHB conversions were between 20% and 30% in the first fermentor and above 50% in the second one. This unsterile and continuous fermentation process opens a new area for reducing the cost in polyhydroxyalkanoates production.  相似文献   

20.
High cell density fed-batch fermentation of Alcaligenes eutrophus was carried out for the production of poly(3-hydroxybutyrate) (PHB) in a 60-L fermentor. During the fermentation, pH was controlled with NH(4)OH solution and PHB accumulation was induced by phosphate limitation instead of nitrogen limitation. The glucose feeding was controlled by monitoring dissolved oxygen (DO) concentration and glucose concentration in the culture broth. The glucose concentration fluctuated within the range of 0-20 g/L. We have investigated the effect of initial phosphate concentration on the PHB production when the initial volume was fixed. Using an initial phosphate concentration of 5.5 g/L, the fed-batch fermentation resulted in a final cell concentration of 281 g/L, a PHB concentration of 232 g/L, and a PHB productivity of 3.14 g/L . h, which are the highest values ever reported to date. In this case, PHB content, cell yield from glucose, and PHB yield from glucose were 80, 0.46, and 0.38% (w/w), respectively. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 28-32, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号