首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,对神经营养因子(neurotrophic factors)尤其是神经营养素(neurotrophins, NTs)及其功能性受体——酪氨酸激酶受体TrkA、TrkB、TrkC的研究进展迅速.这些因子能够促进神经元的存活、生长、分化以及损伤后的修复.应用免疫组化、原位杂交和基因敲除小鼠模型等方法研究这些因子及其受体在内耳发育中的调控作用, 可以在细胞、分子水平上提供有关内耳发育机制的新认识.外源性神经营养素可能在临床治疗失聪上具有潜在的应用价值.  相似文献   

2.
p75神经营养素受体介导的信号传递   总被引:1,自引:0,他引:1  
p75神经营养素受体除可增强神经营养素与Trks受体作用外,还可与神经营养素结合启动另外的信号传递通路。首先,活化的p75^NTR可激活胞内的转录因子NF-kB;其次,p75^NTR与神经营养素结合,可促进神经细胞内鞘磷脂的水解、神经酰胺的释放,导致细胞程序性死亡。此外,p75^NTR还表现出对配体的选择性,而且它与Trks之间存在着相互作用的关系。  相似文献   

3.
神经营养素激活的细胞内信号传导   总被引:6,自引:0,他引:6  
神经营养素首先与细胞表面的Trk受体结合,诱导受体酪氨酸激酶激活。酪氨酸磷酸化的Trk通过与许多信号传递分子形成复合物而介导信号向下游传递。Ras的激活与神经营养素诱导的细胞分化密切相关。不依赖Ras的信号传导通路可能在神经元的存活、电兴奋性和细胞间粘连中具有重要作用。神经营养作用的特异性可能源自于神经营养因子信号传递过程和差异。  相似文献   

4.
神经营养素—4研究进展   总被引:1,自引:0,他引:1  
神经营养素-4(NT-4)能够促进多种神经元的存活,在神经系统发育,分化和损伤修复过程中具有重要作用。NT-4是NGF家族成员之一,它的受体和BDNF相同为TrkB,NT-4的神经营养作用为运动神经元疾病的临床治疗带来了新的希望。  相似文献   

5.
p75受体信号转导途径的研究进展   总被引:1,自引:0,他引:1  
神经生长因子 (nervegrowthfactor,NGF)通过与两种受体结合而发挥作用。一种是高亲和性受体TrkA受体 ,它是由原癌基因Trk编码的蛋白质酪氨酸激酶 ;另一种是低亲和性受体p75,它以相同的亲和力与神经营养素 (neurotrophin ,NT)家族的各成员结合 ,因此被称为神经营养素受体p75(p75NTR)。NGF与TrkA受体结合后发挥其促进神经细胞生长和存活的作用 ,而近年来发现p75受体在特定条件下却能够诱导某些神经细胞和胶质细胞的凋亡 ,由于p75NTR的这一作用 ,它受到越来越多的关注。1 .p75N…  相似文献   

6.
雌激素在生殖系统、认知记忆系统、骨骼和神经的发育及其功能维持等多种生理功能中扮演了重要的作用。近年来,在内耳发育及其功能研究过程中,许多学者发现在听力和平衡系统功能上的性别差异可能归根因于不同性别的雌激素水平差异。这些研究表明,雌激素及其受体在内耳发育、听力和平衡系统功能维持上也具有重要作用。该文用一个新的视角聚焦于雌激素及其受体在内耳发育和功能上的研究进展。该综述能为进一步研究雌激素在听力和平衡系统中的作用机制及相关疾病的临床治疗提供参考。  相似文献   

7.
神经生长因子家族及其受体研究进展   总被引:9,自引:0,他引:9  
过去几年在神经营养因子、受体和神经元细胞程序性死亡的研究领域中取得了几项引人注目的进展:(1)神经生长因子(NGF)基因家族的其他一些成员包括脑源性神经营养因子(BDNF)、神经营养素-3(NT-3)、神经营养素-4(NT-4)、神经营养素-5(NT-5)的发现;(2)神经生长因子三维结构及功能和进化之关系的阐明;(3)定性了两种神经生长因子受体P75^NGFR和原癌基因p140^trkA以及相关  相似文献   

8.
神经细胞的分化是神经系统发育过程中的重要事件之一 ,它涉及神经元的迁移、轴突的定向生长、突触发生和选择性凋亡等一系列过程。这些分化过程是在特定的信号分子精确调控下 ,由胞内信号通路介导完成的。1 .神经生长因子 (NGF)诱导的Ras Raf MAPK原癌基因产物信号通路NGF是第一个被发现的神经营养因子 ,它能诱导多种神经细胞的轴突快速生长 ,也能促使PC1 2细胞向交感样神经元的转变。NGF的主要作用受体为TrkA ,为受体酪氨酸激酶家族成员。活化的TrkA通过接头分子Shc激活膜内表面的原癌基因产物Ras ,活…  相似文献   

9.
转录因子Sox2是Sox基因家族的成员之一,由于它在早期胚胎发生、神经分化和内耳发育等多种重要的发育事件中都起着关键的作用,从而引起了越来越广泛的关注。哺乳动物的内耳主要由6个形态上和功能上不同的感觉区组成,这些区域对声音和前庭信息的传导是必需的,在这些区域的发育过程中,Sox2基因是内耳细胞早期发育所必需的基因。该文就Sox2在内耳发育中的作用作一综述。  相似文献   

10.
大鼠脑内小胶质细胞神经营养素受体的表达   总被引:1,自引:0,他引:1  
神经营养素在神经元的生长、发育中的重要作用已有许多报道,但对神经胶质细胞的作用及其作用机制却知之甚少。在本研究中,我们着重对体外培养的小胶质细胞所表达的神经营养素受体进行了分析。首先,利用酚-氯仿法提取了总的细胞RNA,然后通过特异引物采用反转录多聚酶链式反应(RT-PCR)扩增得到cDNA,再用琼脂糖凝胶电泳、DNA印迹法和免疫细胞化学染色法对神经营养素受体(Trks)进行了测定。实验结果表明:体外培养的大鼠脑小胶质细胞表达高亲和力神经营养素受体TrkA、TrkB和TrkC,以及低亲和力NGF受体LNGFRp75。因此推断,神经营养素对小胶质细胞的生理及调节作用可能是通过它们相应的受体(Trks和LNGFRp75)介导的。这些结果为进一步研究神经营养素在神经系统中的作用机制及小胶质细胞的生理功能提供了资料。  相似文献   

11.
神经营养素家族   总被引:5,自引:0,他引:5  
神经营养素(neurotrophin)家族是近几年发现的神经营养因子基因家庭,目前已知的成员除神经生长因子外,还有脑源性神经营养因子,神经营养素-3,神经营养素-4,本综述了其基因克隆与结构特征,基因表达与调控,生物学功能等方面的研究进展。  相似文献   

12.
睫状体神经营养因子是一种多功能的细胞因子,它在体外和体内对中枢神经系和周围神经系的运动神经元、感觉神经元、交感神经元、副交感神经元的发育、存活、分化、损伤后修复等方面都起重要作用。本介绍了睫状体神经营养因子及其受体的结构和功能、它们的基因以及用基因工作生产的人睫状体神经营养因子及其临床应用前景。  相似文献   

13.
神经发育中的一些新发现的轴突导向因子   总被引:1,自引:0,他引:1  
谢志冈  周长福 《生命科学》1998,10(1):28-29,17
神经发育过程中,存在一些引导轴突向特定靶区生长的导向因子。这些因子以浓度梯度型式作用,或者与细胞膜相连起信号转导作用。主要介绍近来发现几类新的轴突导向因子家族:netrin家族、semaphorin家族、connectih家族、Eph受体家族及其配体家族,以及其它的轴突导向因子。  相似文献   

14.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

15.
内耳毛细胞是一种感受器,负责将机械声能转化为神经脉冲,使机体感知外界声音。毛细胞的功能丧失是永久性感音性神经耳聋的主要原因之一,毛细胞在成体哺乳动物中不会自发再生,研究人员通过模拟哺乳动物内耳损伤,发现Notch信号通路通过侧抑制和侧诱导作用形成新的感觉毛细胞。Notch的下游信号Wnt和上游信号FGF-FGFR是促进内耳发育、细胞增殖、分化以及毛细胞再生的关键信号通路。因此,了解Notch、Wnt、FGF等信号通路及相关转录因子在哺乳动物内耳毛细胞再生过程中的作用机制极为重要,该文重点阐述Notch信号通路以及相关信号分子互作在内耳毛细胞再生中的调控作用,旨在分析耳蜗毛细胞增殖和再生的调控机制,为耳聋治疗方法的实验研究和临床应用提供理论参考。  相似文献   

16.
《生物磁学》2014,(31):I0004-I0004
人体自身会产生一种类似大麻的化学物质,称为内源性大麻素。奥地利研究人员发现,如果孕妇体内的内源性大麻素含量增高,胎儿的大脑发育可能会受到损害。奥地利维也纳医科大学的研究人员在新一期《自然-通讯》上报告说,在胎儿大脑发育过程中,蛋白Slit及其受体Robo是重要的信号分子。附着在Robo受体上的Slit可以调节神经轴突的方向控制,从而引导胎儿大脑回路的形成。  相似文献   

17.
Chen Q  Guo WW  Wu Y  Liu H  Zhai SQ  Wang JZ  Fan M 《生理学报》2002,54(3):263-266
神经营养素 3(neurotrophin 3,NT3)作为螺旋神经节细胞特异的营养因子 ,可有效地支持内耳传入神经元的存活 ,因此有望成为治疗因其退变而引起的感音性神经性耳聋的有效因子。实验采用腺病毒介导lacZ基因 ,检测了外源基因在豚鼠内耳中的长期表达。用噪音制备了豚鼠耳聋模型 ,在噪音损伤后第 7天 ,通过圆窗膜注入 1× 10 8重组腺病毒。注入神经营养素 3重组腺 (Ad NT3)的组为实验组 ,注入Ad lacZ的为对照组。 4周后 ,经NT3抗体免疫细胞化学染色可见 ,在注入Ad NT3病毒的实验组中 ,在内耳多种细胞中有明显的NT3蛋白的表达。HE染色显示 ,注射Ad lacZ组的豚鼠耳蜗螺旋神经节细胞明显退变 ,螺旋神经节内细胞间隙拉大 ,细胞密度明显低于注射Ad NT3实验组动物 (P <0 .0 1)。这一结果说明 ,腺病毒介导的NT3基因可长期表达于内耳中 ,并且可在噪音引起毛细胞死亡后有效地抑制螺旋神经节细胞的退变。  相似文献   

18.
中枢前庭系统拥有处理从内耳传入外周感觉信息的能力,这令动物能够在三维空间中感知头部朝向,并同时能调节运动姿势。在发育中,前庭核团神经元的电生理特性发生很大的改变;膜的兴奋性程度随着年龄而增长,这一特性是与这些神经元逐渐增加发放频率以及加强放电模式规律性同步发生的。前庭核团神经元对感知水平和垂直线性运动的编码能力在发育过程中也做了非常大的完善。这些发育中的前庭核团神经元表面受体,比如谷氨酸受体,亦会随着动物成熟过程做出表达调整,用以调控突触传递可塑性的效率,进而影响这些神经元在神经回路中处理空间编码的能力。总而言之,前庭核团神经元的这些特征有助脑部于发育过程中建立三维空间坐标的能力。  相似文献   

19.
峡视核——研究中枢神经系统发育及细胞凋亡的新模型   总被引:1,自引:0,他引:1  
鸟类离中系统的峡视核是近年来研究中枢神经系统发育过程中细胞凋亡的新模型.在其发育过程中,随着核团的形成、折叠及分层,伴有一些与峡视核相关的临时神经通路的形成和消失,与此同时,该核团中神经元有一半以上发生细胞凋亡.研究表明,形成正确的传入和传出联系对神经元的存活十分重要.分子水平上的机制研究揭示,细胞凋亡与一系列神经营养因子及其相应的受体相关.细胞凋亡对中枢神经系统发育过程中正确神经通路的形成有重要意义.  相似文献   

20.
Galanin(甘丙肽)是一种在中枢神经系统中广泛分布的神经肽,功能涉及摄食、睡眠和觉醒、疼痛、认知和生殖等各方面.我们在成年小鼠脑的神经细胞新生部位如SVZ,DG和RMS发现有galanin及其受体的mRNA表达,同时在SVZ来源的神经干细胞中也检测到有galanin及其受体的表达.细胞实验中,在分化后特定时间段GALKO小鼠来源的神经干细胞产生神经突的细胞比例及神经突的长度明显小于正常小鼠来源的神经干细胞.而加入galanin或受体激动剂GAL2-11后.该神经干细胞则在产生神经突的细胞比例及神经突的长度都明显上升.受体拮抗剂M35的添加可减弱galanin或GAL2-11所产生的作用.这些结果表明galanin及其受体与神经干细胞的分化及神经突的生长有着密切的联系,并可能参与了神经系统的发育.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号