首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norepinephrine-like effects of neuropeptide Y on LH release in the rat   总被引:4,自引:0,他引:4  
S P Kalra  W R Crowley 《Life sciences》1984,35(11):1173-1176
Neuropeptide Y, a recently isolated neuropeptide exhibited norepinephrine-like effects on LH release after intracerebroventricular administration at doses from 0.5 to 10 micrograms. While it promptly suppressed LH release in ovariectomized rats, there was a dose-related stimulation of LH secretion in ovarian steroid primed-ovariectomized rats. In view of the evidence that neuropeptide Y may coexist with adrenergic neurotransmitters, these findings suggest that it may play a role in regulation of LH release in the rat, either independently or in concert with catecholamines.  相似文献   

2.
We studied the effects on plasma LH levels of intracerebroventricular (ICV) administration of neuropeptide Y (NPY), NPY analog (NPY-A), galanin (GAL) and neuropeptide K (NPK) in ovariectomized (ovx) and in ovx rats pretreated with estradiol benzoate (EB) and progesterone (P). Plasma LH levels were estimated in blood drawn from an intrajugular cannula before (0 min) and at 10, 20, 30 and 60 min after the ICV injection of either saline (3 microliter) or one of the neuropeptides in saline. The three classes of peptides elicited different LH responses in the two experimental paradigms. NPY and NPY-A (0.5 or 2 micrograms) decreased LH release in ovx rats and stimulated LH release in EBP ovx rats. However, GAL (0.5, 2 or 10 micrograms) failed to suppress LH release in ovx rats, but it readily increased plasma LH levels in a dose-related fashion in EBP ovx rats. In contrast, NPK readily decreased LH release in ovx rats in a time-related fashion for up to 60 min, but was mildly effective in EBP ovx rats as only a high dose of 10 micrograms produced a small significant increase. Collectively, our results show that (1) NPY can differentially effect LH release in ovx and EBP ovx rats but this property is not equally shared by the neuropeptides that have a similar anatomical disposition in the hypothalamus and (2) the excitatory effects of GAL are demonstrable in the steroid-primed rats and the inhibitory effects of NPK are apparent in the steroid-unprimed ovx rats. Since NPK induced a long-lasting marked suppression with little evidence of LH excitation at low doses, we speculate that either NPK alone or in conjunction with other peptides may mediate the suppression of LH release induced by gonadal steroids.  相似文献   

3.
1. As in two "lower" vertebrates, the lamprey and the eel, single intravascular injections of physiological doses (2.5 micrograms/kg) of epinephrine (E) into the rat immediately increased levels of plasma dopamine (DA) and norepinephrine (NE). 2. Single doses of DA (5 micrograms/kg) enhanced circulating NE and E, while NE (5 micrograms/kg) had no clear impact on the plasma levels of the other two catecholamines (CAs). 3. These data are at variance with findings in the eel, where all three CAs are mutually stimulatory; and in the lamprey, where only E stimulates release of the other two CAs. 4. It appears that E-stimulated CA release is widespread or ubiquitous among vertebrates, and that complex interactions between circulating CAs must be considered under experimental, physiological, and clinical conditions. 5. None of the injections had a significant hyperglycemic effect.  相似文献   

4.
The present study examined the effects of intracerebral (IC) administration of pancreatic polypeptide (PP), neuropeptide Y (NPY), norepinephrine (NE), dynorphin and naloxone on food intake in 2-day-old Leghorn chicks. Of the compounds studied, only PP (20 micrograms) and naloxone (10 and 20 micrograms) elevated food intake significantly as compared to saline injections. NPY, a potent orexigenic agent in mammals, did not elevate consumption significantly in a dose-related fashion. This latter finding was attributed to the occurrence of tonic-clonic convulsions following NPY administration. However, for those chicks which did not exhibit behavioral convulsions, food intake appeared to be elevated by 1, 5 and 10 micrograms of NPY. Similarly, NE did not elevate food intake but instead induced sedation and narcolepsy, a behavioral response which could be distinguished from the convulsions observed after NPY. In a separate group of chicks, the effect of NPY on cortical activity was examined. Bipolar electrodes were used to record EEG activity before and after IC injections of saline, NPY or NE. The behavioral convulsions induced by NPY corresponded with an increase in high amplitude sharp-wave activity, which persisted for up to 30 min post-injection. Collectively, these results suggest that the neurochemical substrates for feeding in 2-day-old Leghorn chicks are distinct from those underlying food intake in adult mammals.  相似文献   

5.
Satiated rats received intracerebroventricular (icv.) injections of several doses of neuropeptide Y (NPY) and the food intake was measured in the following 4 h. The peptide exerted a dose-dependent biphasic effect; the 100 dose significantly suppressed the food intake, but doses of 1 microgram and 5 micrograms stimulated feeding. After the injection of 2 microliters NPY-antiserum (icv., 1:50 dilution), the cumulative food intake decreased significantly in the first 24 h. From the drugs tested the alpha-1-antagonist prazosine (4 micrograms icv.) and the opiate antagonist naloxone (NX, 0.5 micrograms, icv.) selectively inhibited the feeding-stimulatory effect a high icv. dose of NPY. The alpha-2-antagonist yohimbine (4 micrograms icv.) and the non-selective beta-antagonist propranolol (5 micrograms icv.) did not influence either effect of NPY on feeding. The results suggest the involvement of alpha-1-adrenergic and opiate receptors in the food intake-stimulatory effect of a large icv. dose of NPY. The food intake-inhibitory effect of a low icv. peptide dose was not selectively antagonized by the receptor blocking agents used.  相似文献   

6.
In the unrestrained rat, the hyperphagic-like ingestion of food evoked by the sustained elevation of neuropeptide-Y (NPY) in the hypothalamus was correlated with the release and turnover of monoaminergic transmitters in this structure. A single guide tube was implanted stereotaxically in the perifornical region of the hypothalamus for localized push-pull perfusion of an artificial CSF vehicle or NPY1–36 in a concentration of 10, 50, or 100 ng/1.0 l. After the rat was fully satiated, a site reactive to NPY was perfused repeatedly at a rate of 20 l/min for 6.0 min with an interval of 6.0–12 min elapsing between each perfusion. Samples of perfusate were analyzed by HPLC with coulometric detection for DA, HVA, DOPAC, NE, MHPG, 5-HT, and 5-HIAA. Although control perfusions were without effect on feeding or monoamine activity, NPY evoked mean cumulative intakes of food of 14±2.4, 25.6±3.0 and 26.5±3.2 g in response to 10, 50, or 100 ng/l concentrations of NPY, respectively, over the 4.0–5.0 hr test interval. HPLC analyses showed that during feeding the release of both NE and DA was enhanced significantly. The turnover of both catecholamines likewise increased significantly as reflected by the elevated levels of MHPG, DOPAC and HVA. However, neither the basal efflux of 5-HT nor its turnover, as reflected by the output of 5-HIAA, was affected during feeding induced by NPY perfused in the hypothalamus. These results suggest that a sustained elevation of NPY in the hypothalamus causes a perturbation in the basal activity of NE and DA which are both implicated in the neuronal mechanism regulating normal eating behavior. Thus, these catecholamine neurotransmitters are envisaged to comprise an intermediary step in the functional role played by NPY in the hypothalamus in integrating the control of energy metabolism and caloric intake.  相似文献   

7.
We report that the two classes of regulatory neuropeptides, neuropeptide Y (NPY) and endogenous opioid peptides (EOP), modulate luteinizing hormone (LH) release in diverse fashion in gonad-intact rats. Each neuropeptide acts at two loci, the hypothalamus and pituitary, to excite (NPY) or inhibit (EOP) LH release. At the hypothalamic level, NPY stimulates luteinizing hormone releasing hormone (LHRH) release, a response mediated by alpha 2-adrenoreceptors and amplified in the presence of adrenergic agonists. At the pituitary level, NPY acts in concert with LHRH to amplify the LH response. In contrast, EOP inhibit LHRH release by decreasing the supply of excitatory adrenergic signals in the vicinity of LHRH neurons in the preoptic-tuberal pathway, and at the pituitary level, they decrease LH release in response to LHRH. Further, the gonadal steroidal milieu facilitates NPY neurosecretion and postsynaptic expression of NPY in concert with adrenergic system; a similar clear-cut facilitatory effect of gonadal steroids on EOP secretion is not yet obvious. Our additional studies imply that the EOP system has the potential to increase sensitivity towards gonadal steroids and that to induce the preovulatory LH surge the neural clock may decrease the inhibitory EOP tone prior to the critical period on proestrus. This antecedent neural event allows the excitatory adrenergic and NPY signals to evoke LHRH secretion at a higher frequency approximating that seen in ovariectomized rats. Further studies are under way to delineate the steroid-induced subcellular events that integrate the action of these regulatory peptides in the control of the episodic LHRH secretion pattern which sustains basal and cyclic gonadotropin release in the rat.  相似文献   

8.
Horvath TL  Pu S  Dube MG  Diano S  Kalra SP 《Peptides》2001,22(3):473-481
Neuropeptide Y (NPY) stimulates and gamma-amino butyric acid (GABA) inhibits LH release in the rat. Since a sub-population of NPY-producing neurons in the arcuate nucleus (ARC) of the hypothalamus co-express GABA, the possibility of an interplay between NPY and GABA in the release of LH was investigated in two ways. First by employing light and electron microscopic double staining for NPY and GABA, using pre and post-immunolabeling on rat brain sections, we detected GABA in NPY immunoreactive axon terminals in the MPOA, one of the primary sites of action of these neurotransmitters/neuromodulators in the regulation of LH release. These morphological findings raised the possibility that inhibitory GABA co-released with NPY may act to restrain the excitatory effects of NPY on LH release. Muscimol (MUS, 0.44 or 1.76 nmol/rat), a GABA(A) receptor agonist, administered intracerebroventricularly (icv), alone failed to affect LH release, but NPY (0.47 nmol/rat icv) alone stimulated LH release in ovarian steroid-primed ovariectomized rats. On the other hand, administration of MUS blocked the NPY-induced stimulation of LH release in a dose-dependent manner. Similarly, administration of MUS abolished the excitatory effects on LH release of 1229U91, a selective NPY Y4 receptor agonist. These results support the possibility that in the event of co-release of these neurotransmitters/neuromodulators, GABA may act to restrain stimulation of LH release by NPY during the basal episodic and cyclic release of LH in vivo.  相似文献   

9.
Fluorescence immunocytochemistry of guinea pig vas deferens and seminal vesicle revealed dense networks of nerve fibers containing both neuropeptide Y (NPY) and dopamine-beta-hydroxylase (DBH), a marker for adrenergic neurons. The effects of norepinephrine (NE) and NPY on the smooth musculature of these organs were studied in vitro. NE inhibited the response to electrical nerve stimulation and increased the basic tension in the vas deferens and contracted the smooth muscle of the seminal vesicle, but had no effect on the contractile response to transmural stimulation in the latter organ. NPY had similar effects on the vas and vesicula, i.e. it inhibited the electrically induced contractions and had no effect on the basic tension. The results suggest a role for NPY as a transmitter that acts before the site of the neuromuscular junction to modulate the release of other transmitters from motor nerve fibers in the smooth musculature.  相似文献   

10.
Central injection of neuropeptide-Y (NPY) has been shown to attenuate secretion of LH in ovariectomized rats, rabbits, and monkeys. Several investigators have reported elevated concentrations of NPY in the central nervous system of undernourished animals. The relationship between nutrition and reproduction positions NPY as a potential neuromodulator involved in nutritionally induced changes in secretion of LH. Three experiments were conducted with the following objectives: 1) to examine the effects of NPY on secretion of LH in ovariectomized (OVX) ewes and the influence of estradiol-17 beta (E) on these effects; 2) to determine whether NPY may act through direct effects on the pituitary to influence secretion of LH; and 3) to determine changes in concentrations of NPY in laterocerebro-spinal fluid (CSF) of food-restricted ewes compared to well-fed ewes. In Experiment 1, OVX ewes with s.c. implants of E (OVX + E, n = 4) or no steroid treatment (OVX, n = 4) were fitted with intracerebroventricular (i.c.v.) and jugular cannulae. One of 4 doses of porcine NPY (pNPY; 0, 0.5, 5, or 50 micrograms) was injected i.c.v. and blood samples were collected every 10 min for 4 h prior to and following i.c.v. injection. Blood serum was assayed for LH. The experiment was replicated four times such that each ewe received each dose of pNPY. Mean concentrations of LH as well as frequency and amplitude of pulses of LH were attenuated in response to i.c.v. injection of pNPY in a dose-related manner in both OVX and OVX + E ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Intracerebroventricular (i.c.v.) administration of leukotriene (LT) C4 at doses of 2, 0.5 and 0.2 micrograms/rat significantly stimulated (3-12 fold) the release of LH into the peripheral blood of male rats. Injection of anti-LHRH serum had no effect on LTC4-stimulated LH release, but did block PGE2- stimulated LH release. I.c.v.- infused LTC4 also stimulated the release of LHRH into the hypophyseal portal blood. This is the first report of an in vivo action of LTC4 on the release of a hypothalamic releasing factor (LHRH) and a pituitary hormone (LH). These observations, plus in vitro results, clearly show that LTC4 stimulates LH release by acting on both the hypothalamus, causing LHRH release, and on the pituitary. Then the action of LTC4 on LH release in vivo is quite different from the indirect action of PGE2.  相似文献   

12.
We previously demonstrated that 3rd ventricular (3V) neuropeptide Y (NPY) or agouti-related protein (AgRP) injection potently stimulates food foraging/hoarding/intake in Siberian hamsters. Because NPY and AgRP are highly colocalized in arcuate nucleus neurons in this and other species, we tested whether subthreshold doses of NPY and AgRP coinjected into the 3V stimulates food foraging, hoarding, and intake, and/or neural activation [c-Fos immunoreactivity (c-Fos-ir)] in hamsters housed in a foraging/hoarding apparatus. In the behavioral experiment, each hamster received four 3V treatments by using subthreshold doses of NPY and AgRP for all behaviors: 1) NPY, 2) AgRP, 3) NPY+AgRP, and 4) saline with a 7-day washout period between treatments. Food foraging, intake, and hoarding were measured 1, 2, 4, and 24 h and 2 and 3 days postinjection. Only when NPY and AgRP were coinjected was food intake and hoarding increased. After identical treatment in separate animals, c-Fos-ir was assessed at 90 min and 14 h postinjection, times when food intake (0-1 h) and hoarding (4-24 h) were uniquely stimulated. c-Fos-ir was increased in several hypothalamic nuclei previously shown to be involved in ingestive behaviors and the central nucleus of the amygdala (CeA), but only in NPY+AgRP-treated animals (90 min and 14 h: magno- and parvocellular regions of the hypothalamic paraventricular nucleus and perifornical area; 14 h only: CeA and sub-zona incerta). These results suggest that NPY and AgRP interact to stimulate food hoarding and intake at distinct times, perhaps released as a cocktail naturally with food deprivation to stimulate these behaviors.  相似文献   

13.
We have examined the regulation of the orexigenic neurotransmitter, NPY, in hypothalamic slices of rat brain to discover whether the leptin or melanocortin receptor-4 (MCR-4) agonists, which act as satiety signals, can influence the release of this neurotransmitter. Basal and potassium-stimulated NPY release from hypothalamic slices was not significantly altered by the addition of recombinant murine leptin. However, the melanocortin-4 agonists, alpha-MSH and MT-II, significantly inhibited potassium-stimulated NPY release (p < 0.01) without significantly altering basal NPY release. However, the MCR-4 antagonist, agouti-related protein, did not significantly alter either basal or stimulated NPY release. In conclusion, hypothalamic NPY release can be attenuated by MCR-4 agonists, but not by leptin, suggesting that the activation of MCR-4 receptors leading to satiety can also further inhibit food intake through an inhibition of orexigenic NPYergic activity.  相似文献   

14.
The effects of two catecholamines, epinephrine (EP) and norepinephrine (NE), on carbohydrate metabolism were studied by incubating chinook salmon liver in vitro. Basal release of glucose over the course of a 5-h incubation was 7.93 +/- 1.70 mumol/g dry weight. Both EP and NE (2 X 10(-7) M) stimulated glucose release rapidly during the first hour. After 5 h, EP and NE significantly increased glucose release over basal levels to 43.55 +/- 9.01 and 32.75 +/- 6.17 mumol/g dry weight, respectively. Epinephrine- and NE-stimulated glucose release was dose dependent, with a minimum effective dose of 10(-9) M. ED50 for both agents was approximately 2 X 10(-7) M; maximal stimulation occurred at 10(-5) M. No difference in potency between the two catecholamines was found. The effects of adrenergic agonists and antagonists were also studied. Alpha-agonists, methoxamine and phenylephrine, had no effect on glucose release. Isoproterenol, a beta-agonist, stimulated glucose release in a manner similar to EP. The beta-antagonist, propranolol, inhibited both catecholamine- and isoproterenol-stimulated glucose release. Alpha-antagonists (phentolamine, prazosin, and yohimbine) had no effect on either catecholamine- or isoproterenol-stimulated glucose release. Epinephrine and NE stimulate glycogen phosphorylase activity; propranolol inhibits catecholamine-stimulated phosphorylase activity. These results indicate that catecholamines stimulate glucose mobilization in salmon liver by promoting glycogenolysis mediated through beta-adrenergic receptors.  相似文献   

15.
These experiments were undertaken to investigate the effects of systemically administered neuropeptide Y (NPY) on gonadotropin secretion in the intact male rat and to determine whether the effects observed might be mediated by a direct action of NPY alone on the anterior pituitary gland (APG). Subcutaneous administration of 10 micrograms of NPY caused a greater than 2-fold increase in serum luteinizing hormone (LH) concentration at 15 min after injection but was without effect on serum follicle-stimulating hormone (FSH) or thyrotropin-stimulating hormone (TSH) levels. The addition of NPY (final concentrations of 10(-8) to 10(-11) M) or the structurally similar neuropeptide, rat pancreatic polypeptide, to culture medium containing hemi-APG did not alter the release of LH, FSH, or TSH. The results indicate that systemically administered NPY can elevate serum LH concentration in intact male rats. This effect does not appear to be due to NPY acting alone at the level of the APG.  相似文献   

16.
The release of gastrin into the serum of five conscious gastric fistula dogs after a meat meal was monitored for 2 hours. Neither the rate of increase in serum gastrin nor the 2 hour cumulative integrated gastrin response was changed by administration of small doses of somatostatin tetradecapeptide (0.5 microgram/kg.hr IV for 2 hr), 16-16 dimethyl prostaglandin E2 (0.25 microgram/kg.hr IV for 2 hr or 1 microgram/kg intragastrically), or bethanechol (20 micrograms/kg.hr IV for 2 hr). Acidification of the food in the antrum to pH 1.2 to 1.4 eliminated serum gastrin release in response to food. In control studies, serum gastrin levels were not altered by IV administration of saline for 2 hr with no food or when a plate of food was held just out of the dogs' reach (teasing). Food-stimulated gastrin release was contrasted with that stimulated by bombesin under identical laboratory conditions [17]. In each case, antral acidification, somatostatin, prostaglandin E2 and bethanechol affected bombesin-stimulated gastrin release differently from that stimulated by food. We conclude that food and bombesin release gastrin by different pathways.  相似文献   

17.
Apelin is the recently identified endogenous ligand for the G-protein-coupled receptor, APJ. Preproapelin and APJ mRNA are found in hypothalamic regions known to be important in the regulation of food and water intake, and pituitary hormone release. The effects of intracerebroventricular (ICV) administration of pyroglutamylated apelin-13 on food and water intake and pituitary hormone release in rats were investigated. Apelin-13 had little effect on food intake, but dose-dependently increased drinking behaviour and water intake at 1 h. Apelin-13 (10 nmol) increased water intake by up to sixfold compared to saline. Compared to saline control, apelin-13 (10 nmol) significantly increased plasma ACTH and corticosterone and decreased plasma prolactin, LH and FSH at 30 min. In vitro, apelin-13 stimulated the release of CRH and AVP from hypothalamic explants, but had no effect on NPY release. These results suggest that apelin may play an important role in the hypothalamic regulation of water intake and endocrine axes.  相似文献   

18.
X Paez  R D Myers 《Peptides》1991,12(3):609-616
Hyperphagic-like intake of food was determined in the unrestrained rat during the sustained elevation over time of neuropeptide Y (NPY) within the paraventricular nucleus (PVN) and surrounding hypothalamic regions. A single guide tube was implanted stereotaxically in each of 22 rats for localized, intermittent perfusions of a CSF vehicle, nondeprotected NPY(1-36) or native NPY. Each site in the PVN of the fully sated rat was perfused repeatedly over a 5.0-h interval by means of a standard push-pull cannula system at a rate of 20 microliters/min for 6.0 min in one of three concentrations: 0.2, 1.0 and 2.0 micrograms/min. Two perfusions of 1.0 micrograms/min NPY evoked an intake of 4.6 +/- 1.1 g of food over a 3.0-h period, whereas 4-7 and 8-15 perfusions of this concentration of NPY, distributed over 5.0 h, induced the sated rats to eat a total of 12.0 +/- 1.1 g and 33.2 +/- 3.0 g, respectively. During a fixed number of 10 hypothalamic perfusions distributed over 5.0 h, concentrations of 0.2 and 2.0 micrograms/min NPY caused a cumulative intake of food in the rats of 14.2 +/- 2.0 g and 31.7 +/- 3.3 g, respectively. Under each condition, parallel push-pull perfusions of either control solution in the same hypothalamic sites were without effect on feeding. During the 5.0-h interval of repeated perfusions, successive bouts of eating occurred with individual intakes of food reaching as high as 49.0 g, which exceeded by up to two-fold the entire daily consumption of food. However, ingestion of water was unaffected by perfusion of NPY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

20.
It has been recently shown that intraventricular or systemic injection of neuropeptide Y (NPY) can produce a decrease in plasma luteinizing hormone (LH) levels in castrated rats of both sexes. In order to evaluate the physiological role of NPY in the regulation of LH secretion in the female rat, we proceeded to immunoneutralization experiments using specific antibodies to NPY. Injection of 0.5 ml antiserum to NPY produce a 20-fold increase of LH plasma levels, whereas injection of preimmune serum did not modify the plasma concentrations of LH. To investigate the possibility that catecholamines or serotonin might be involved in the effect of NPY in LH secretion, castrated rats were treated with alpha-methylparatyrosine (alpha-MPT), an inhibitor of catecholamine biosynthesis, or received an i.c.v. injection of the neurotoxin 5-7-dihydroxytryptamine (5,7-DHT) prior to the intraventricular injections of NPY. The pretreatment with alpha-MPT could not prevent the decrease of plasma LH induced by NPY injection whereas the pretreatment with 5,7-DHT reversed the effect of NPY injection. The anatomical connection between LH-releasing hormone (LHRH) and NPY neuronal systems were also investigated using double immunostaining technique. It appeared that NPY endings are in apposition to LHRH cell bodies in the preoptic area in proximity to the organum vasculosum of the lamina terminalis (OVLT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号