首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elementary steps or geminate states in the reaction of gaseous ligands with transport proteins delineate the trajectory of the ligand and its rebinding to the heme. By use of kinetic studies of the 765-nm optical "conformation" band, three geminate states were identified for temperatures less than approximately 100 K. MbCO, which is accumulated by photolysis between 1.2 and approximately 10 K, was characterized by our previous optical and X-ray absorption studies [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829]. Between 10 and approximately 100 K, geminate states that are also identified that have recombination rates of approximately 10(3) s-1 and approximately 10(-5) s-1 (40 K). Thus, it is possible to maintain a steady-state nearly homogeneous population of the slowest recombining geminate state, Mb, by regulated continuous illumination (optical pumping). Both X-ray absorption and resonance Raman studies under similar conditions of optical pumping show that the heme structure around the iron in Mb is similar to that of MbCO. In both geminate states, the iron-proximal histidine distance remains unchanged (+/- 0.02 A) from that of MbCO while the iron to pyrrole nitrogen average distance has not fully relaxed to that of the deoxy state. In MbCO the CO remains close to iron but not bound, and the Fe...CO angle, which is bent in MbCO (127 +/- 4 degrees C), is decreased by approximately 15 degrees [Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523]. The CO molecule in Mb, however, has moved approximately 0.7 A further from iron. Computer graphics modeling of the crystal structure of MbCO places the CO in a crevice in the heme pocket that is just large enough for the CO molecule end-on. Above approximately 100 K resonance Raman studies show that this structure relaxes to the deoxy state.  相似文献   

2.
T Y Teng  H W Huang  G A Olah 《Biochemistry》1987,26(25):8066-8072
A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829; Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523] has provoked much discussion on the heme structure of the photoproduct (MbCO). The EXAFS interpretation that the Fe-CO distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies [Fiamingo, F. G., & Alben, J. O. (1985) Biochemistry 24, 7964-7970; Sassaroli, M., & Rousseau, D. L. (1986) J. Biol. Chem. 261, 16292-16294]. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix [Teng, T. Y., & Huang, H. W. (1986) Biochim. Biophys. Acta 874, 13-18]. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 micron) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of MbCO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally MbCO is much closer to MbCO than to deoxy-Mb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The protein contribution to the relative binding affinity of the ligands CO and O2 toward myoglobin (Mb) has been simulated using free energy perturbation calculations. The tautomers of the His E7 residue are different for the oxymyoglobin (MbO2) and carboxymyoglobin (MbCO) systems. This was modeled by performing two-step calculations that mutate the ligand and mutate the His E7 tautomers in separate steps. Differences in hydrogen bonding to the O2 and CO ligands were incorporated into the model. The O2 complex was calculated to be 2-3 kcal/mol more stable than the corresponding CO complex when compared to the same difference in an isolated heme control. This value agrees well with the experimental value of 2.0 kcal/mol. In qualitative agreement with experiments, the Fe-C-O bond is found to be bent (theta = 159.8 degrees) with a small tilt (theta = 6.2 degrees). The contributions made by each of the 29 residues--within the 9.0-A radius of the iron atom--to the free energy difference are separated into van der Waals and electrostatic contributions; the latter contributions are dominant. Aside from the proximal histidine and the heme group, the residues having the largest difference in free energy in mutating MbO2-->MbCO are His E7, Phe CD1, Phe CD4, Val E11, and Thr E10.  相似文献   

4.
J Ramsden  T G Spiro 《Biochemistry》1989,28(8):3125-3128
The resonance Raman band assigned to Fe--CO stretching in the sperm whale myoglobin CO adduct shifts from 507 cm-1 at neutral pH to 488 cm-1 at low pH, in concert with a shift of the C-O stretching infrared band from 1947 to 1967 cm-1 (Fuchsman & Appleby, 1979), while the 575-cm-1 Fe-C-O bending RR band loses intensity. The pKa that characterizes these changes is approximately 4.4. The vibrational frequencies at low pH are well modeled by the protein-free CO, imidazole adduct of protoheme in a nonpolar solvent while those at high pH are modeled by the adduct of a heme with a covalent strap (Yu et al., 1983) which inhibits upright CO binding. It is inferred that the Fe-C-O unit changes from a tilted to an upright geometry when the distal histidine is protonated, because its side chain swings out of the heme pocket due to electrostatic repulsion with a nearby arginine residue. A different protonation step (pKa = 5.7), which has been shown to modulate the CO rebinding kinetics (Doster et al., 1982) as well as the optical spectrum (Fuchsman & Appleby, 1979), is suggested to involve a global structure change associated with protonation of histidine residues distant from the heme.  相似文献   

5.
We monitored the occupancy of a functionally important non-coordinated water molecule in the distal heme pocket of sperm whale myoglobin over the pH range 4.3-9.4. Water occupancy was assessed by using time-resolved spectroscopy to detect the perturbation of the heme visible band absorption spectrum caused by water entry after CO photodissociation ( Goldbeck, R. A., Bhaskaran, S., Ortega, C., Mendoza, J. L., Olson, J. S., Soman, J., Kliger, D. S., and Esquerra, R. M. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 1254-1259 ). We found that the water occupancy observed during the time interval between ligand photolysis and diffusive recombination decreased by nearly 20% as the pH was lowered below 6. This decrease accounted for most of the concomitant increase in the observed CO bimolecular recombination rate constant, as the lower water occupancy presented a smaller kinetic barrier to CO entry into the pocket at lower pH. These results were consistent with a model in which the distal histidine, which stabilizes the water molecule within the distal pocket by accepting a hydrogen bond, tends to swing out of the pocket upon protonation and destabilize the water occupancy at low pH. Extrapolation of this model to lower pH suggests that the additional increase in ligand association rate constant observed previously in stopped-flow studies at pH 3 may also be due in part to reduced distal water occupancy concomitant with further His64 protonation and coupled protein conformational change.  相似文献   

6.
Structures of photolyzed carboxymyoglobin   总被引:6,自引:0,他引:6  
F G Fiamingo  J O Alben 《Biochemistry》1985,24(27):7964-7970
The structures of photoactivated carboxymyoglobin (Mb*CO) at temperatures to 10 K have been investigated by Fourier transform infrared (FT-IR) spectroscopy, visible spectroscopy, and near-infrared spectroscopy. Two energy states for *CO are observed by FT-IR, which are altered in frequency by 94% and 88% of the difference from the ground-state heme CO toward free CO gas [Alben, J. O., Beece, D., Bowne, S. F., Doster, W., Eisenstein, L. Frauenfelder, H., Good, D., McDonald, J. D., Marden, M. C., Moh, P. P., Reinisch, L., Reynolds, A. H., Shyamsundar, E., & Yue, K. T. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3744-3748]. Ground-state MbCO shows no absorption in the near-infrared from 700 to 1200 nm. Conversely, Mb*CO shows an absorption near 766 nm, similar to that of ferrous myoglobin (deoxy-Mb) at 758 nm. These data are compared with M?ssbauer isomer shifts and quadrupole splitting [Spartalian, K., Lang, G., & Yonetani, T. (1976) Biochim. Biophys. Acta 428, 281-290] and magnetic susceptibility measurements [Roder, H., Berendzen, J., Bowne, S. F., Frauenfelder, H., Sauke, T. B., Shyamsunder, E., & Weissman, M. B. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2359-2363], which clearly indicate that the iron in both Mb*CO and deoxy-Mb is in the high-spin Fe(II) state, as does the heme transition in the Soret [Iizuka, T., Yamamoto, H., Kotani, M., & Yonetani, T. (1974) Biochim. Biophys. Acta 371, 126-139]. Thus the electronic structure of iron in Mb*CO is nearly identical with that of deoxy-Mb, and *CO is only slightly perturbed from the free gas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cao W  Christian JF  Champion PM  Rosca F  Sage JT 《Biochemistry》2001,40(19):5728-5737
Flash photolysis investigations of horse heart metmyoglobin bound with NO (Mb(3+)NO) reveal the kinetics of water entry and binding to the heme iron. Photodissociation of NO leaves the sample in the dehydrated Mb(3+) (5-coordinate) state. After NO photolysis and escape, a water molecule enters the heme pocket and binds to the heme iron, forming the 6-coordinate aquometMb state (Mb(3+)H2O). At longer times, NO displaces the H2O ligand to reestablish equilibrium. At 293 K, we determine a value k(w) approximately 5.7 x 10(6) s(-1) for the rate of H2O binding and estimate the H2O dissociation constant as 60 mM. The Arrhenius barrier height H(w) = 42 +/- 3 kJ/mol determined for H2O binding is identical to the barrier for CO escape after photolysis of Mb(2+)CO, within experimental uncertainty, consistent with a common mechanism for entry and exit of small molecules from the heme pocket. We propose that both processes are gated by displacement of His-64 from the heme pocket. We also observe that the bimolecular NO rebinding rate is enhanced by 3 orders of magnitude both for the H64L mutant, which does not bind water, and for the H64G mutant, where the bound water is no longer stabilized by hydrogen bonding with His-64. These results emphasize the importance of the hydrogen bond in stabilizing H2O binding and thus preventing NO scavenging by ferric heme proteins at physiological NO concentrations.  相似文献   

8.
Rebinding and relaxation in the myoglobin pocket   总被引:28,自引:0,他引:28  
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding enthalpies and and entropies. The integrated absorbances and pH dependences of the bands permit identification of the substates with the conformations observed in the X-ray data (Kuriyan et al., J. Mol. Biol. 192 (1986) 133). At low pH, A0 is hydrogen-bonded to His E7. The substates A0-A3 interconvert above about 180 K in a 75% glycerol/water solvent and above 270 K in buffered water. No major interconversion is seen at any temperature if MbCO is embedded in a solid polyvinyl alcohol matrix. The dependence of the transition on solvent characteristics is explained as a slaved glass transition. After photodissociation at low temperature the CO is in the heme pocket B. The resulting CO stretching bands which are identified as B substates are blue-shifted from those of the A substates. At 40 K, rebinding after flash photolysis has been studied in the Soret, the near-infrared, and the integrated A and B substates. All data lie on the same rebinding curve and demonstrate that rebinding is nonexponential in time from at least 100 ns to 100 ks. No evidence for discrete exponentials is found. Flash photolysis with monitoring in the infrared region shows four different pathways within the pocket B to the bound substates Ai. Rebinding in each of the four pathways B----A is nonexponential in time to at least 10 ks and the four pathways have different kinetics below 180 K. From the time and temperature dependence of the rebinding, activation enthalpy distributions g(HBA) and preexponentials ABA are extracted. No pumping from one A substate to another, or one B substate to another, is observed below the transition temperature of about 180 K. If MbCO is exposed to intense white light for 10-10(3) s before being fully photolyzed by a laser flash, the amplitude of the long-lived states increases. The effect is explained in terms of a hierarchy of substates and substate symmetry breaking. The characteristics of the CO stretching bands and of the rebinding processes in the heme pocket depend strongly on the external parameters of solvent, pH and pressure. This sensitivity suggests possible control mechanisms for protein reactions.  相似文献   

9.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

10.
Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond.  相似文献   

11.
Recent studies suggest that the allosteric state of the protein surrounding the hemes in hemoglobin affects both geminate recombination of CO and the apparent quantum efficiency (AQE) for photolysis (Rohlfs, R.J., J.S. Olson, and Q.H. Gibson, 1988, J. Biol. Chem. 263: 1803-1813. We report combined flow/flash experiments in which the AQE for photolysis of Hb(CO)1 was measured as a function of time delay after its formation. Experiments were carried out at 20 degrees C in 0.1 M phosphate buffer at pH 7.0 with CO saturations of 10% or less. The AQE was observed to decrease from a value close to 1.0 at short times to approximately 0.6 after 2 s. The fundamental photolysis step for carboxyhemoglobin is known to have a quantum efficiency of nearly 1.0, whereas the lower AQE values we observe result from competition between rapid geminate recombination and a rapid reaction step leading to escape of the CO to the solution phase. Changes in AQE values reflect changes in these rapid reaction steps which presumably result from conformational change in Hb(CO)1. The change in AQE is consistent with conversion of one or more hemes to an R-like state but these changes could not be even approximately described in terms of a simple two-state allosteric model.  相似文献   

12.
The structures of carbonmonoxyhaemoglobins A and Cowtown (His146 beta----Leu) have been refined at 2.2 A (1 A = 0.1 nm) and 2.3 A resolution, respectively. The least squares fit to the Fe-C-O line makes an angle to the haem normal of about 6 degrees. The Fe-C-O group is bent from linearity by about 7 degrees. The porphyrins in the CO liganded haemoglobins are ruffled. This deformation of the haem and the distortion of the Fe-C-O group may explain the low CO affinity of haemoglobin. The electron density for the C-terminal residues is low but sufficient to distinguish the histidyl and leucyl residues clearly. The similarity between these two structures, apart from 146 beta, means that the reduced alkaline Bohr effect is due solely to the replacement of histidine by a leucine.  相似文献   

13.
Association and dissociation rate constants for O2, CO, and methyl isocyanide binding to native and distal pocket mutants of R state human hemoglobin were measured using ligand displacement and partial photolysis techniques. Individual rate constants for the alpha and beta subunits were resolved by comparisons between the kinetic behavior of the native and mutant proteins. His-E7 was replaced with Gly and Gln in both alpha and beta subunits and with Phe in beta subunits alone. In separate experiments Val-E11 was replaced with Ala, Leu, and Ile in each globin chain. The parameters describing ligand binding to R state alpha subunits are sensitive to the size and polarity of the amino acids at positions E7 and E11. The distal histidine in this subunit inhibits the bimolecular rate of binding of both O2 and CO, sterically hinders bound CO and methyl isocyanide, and stabilizes bound O2 by hydrogen bonding. The Val-E11 side chain in alpha chains also appears to be part of the kinetic barrier to O2 and CO binding since substitution with Ala causes approximately 10-fold increases in the association rate constants for the binding of these diatomic ligands. However, substitution of Val-E11 by Ile produces only small decreases in the rates of ligand binding to alpha subunits. For R state beta subunits, the bimolecular rates of O2 and CO binding are intrinsically large, approximately 2-5-fold greater than those for alpha subunits, and with the exception of Val-E11----Ile mutation, little affected by substitutions at either the E7 or E11 positions. For the beta Val-E11----Ile mutant the association rate and equilibrium constants for all three ligands decreased 10-50-fold. All of these results agree with Shaanan's conclusions that the distal pocket in liganded beta subunits is more open whereas in alpha subunits bound ligands are more sterically hindered by adjacent distal residues (Shaanan, B. (1983) J. Mol. Biol. 171, 31-59). In the case of O2 binding to alpha subunits, the unfavorable steric effects are compensated by the formation of a hydrogen bond between the nitrogen atom of His-E7 and bound dioxygen.  相似文献   

14.
Structural constraints derived from proton NMR relaxation measurements on poly(dA).poly(dT) in the form of interproton separations and orientation have been combined with molecular mechanics and annealed molecular dynamics calculations to derive a model for the solution-state structure of this molecule. Three different possible starting configurations, including the standard A and B forms of Arnott and Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Commun. 47, 1506-1509] and the heteronomous (H) structure [Arnott, S., Chandrasekaran, R., Hall, I. H., & Puigjaner, L. C. (1983) Nucleic Acids Res. 11, 4141-4155], were examined. Both the B- and H-DNA structures converged to the same B-like structure (approximately C2'-endo conformation on both the A and T sugars, glycosidic bond torsional angle of 63-73 degrees) with the same energies and average helical parameters that gave good fits of the NMR relaxation rates. This model also accounts for the experimental observation [Behling, R. W., & Kearns, D. R. (1986) Biochemistry 25, 3335-3346] that the AH2 proton interacts more strongly with the H1' sugar proton on the T strand than on the A strand. Although the helix repeat angle (39 degrees) is larger than that for standard B-DNA (36 degrees), this does not result in a significantly smaller minor groove, as monitored by the interstrand P-P separation. Calculations starting with the A-DNA structure lead to a very high energy structure that gave a poorer fit of the NMR data.  相似文献   

15.
Mycobacterium tuberculosis (Mtb) KatG is a catalase-peroxidase that is thought to activate the antituberculosis drug isoniazid (INH). The local environment of Mtb KatG and its most prevalent INH-resistant mutant, KatG(S315T), is investigated with the exogenous ligands CO and NO in the absence and presence of INH by using resonance Raman, FTIR, and transient absorption spectroscopy. The Fe-His stretching vibration is detected at 244 cm(-)(1) in the ferrous forms of both the wild-type enzyme and KatG(S315T). The ferrous-CO complex of both enzymes exhibits nu(CO), nu(Fe-CO), and delta(Fe-C-O) vibrations at 1925, 525, and 586 cm(-)(1), respectively, indicating a positive electrostatic environment for the CO complex, which is probably weakly hydrogen-bonded to a distal residue. The CO geometry is nonlinear as indicated by the unusually high intensity of the Fe-C-O bending vibration. The nu(Fe(III)-NO) and delta(Fe(III)-N-O) vibrations are detected at 596 and 571 cm(-)(1), respectively, in the ferric forms of wild-type and mutant enzyme and are indicative of a nonlinear binding geometry in support of the CO data. Although the presence of INH does not affect the vibrational frequencies of the CO- and NO-bound forms of either enzyme, it seems to perturb slightly their Raman intensities. Our results suggest a minimal, if any, perturbation of the distal heme pocket in the S315T mutant. Instead, the S315T mutation seems to induce small changes in the KatG conformation/dynamics of the ligand access channel as indicated by CO rebinding kinetics in flash photolysis experiments. The implications of these findings for the catalytic mechanism and mechanism of INH resistance in KatG(S315T) are discussed.  相似文献   

16.
A kinetic description of ligand binding to sperm whale myoglobin   总被引:2,自引:0,他引:2  
Nanosecond recombination time courses were measured by photolyzing O2, NO, CO, methyl, ethyl, n-propyl, n-butyl, and tert-butyl isocyanide complexes of sperm whale myoglobin with a 30-ns laser pulse at pH 7, 20 degrees C. Absorbance was measured both during and after the excitation pulse and as a function of laser light intensity. The results were analyzed quantitatively in terms of a three-step reaction scheme, MbX in equilibrium B in equilibrium C in equilibrium Mb + X, where Mb is myoglobin, B represents a geminate state in which the ligand is present in the distal pocket but not covalently bound to the iron atom, and C, a state in which the ligand is still embedded in the protein but further away from the heme group. The fitted rate parameters were required to be consistent with the observed overall quantum yield, Q, which had been measured independently using much longer (approximately 0.5 ms) xenon flash pulses. Three major conclusions were derived from these analyses. First, the overall quantum yield of the ligand complex is determined primarily by the competition between the rate of iron-ligand bond formation from the initial photoproduct, kB----MbX, and the rate of migration away from state B, kB----C. For example, kB----C approximately equal to 30-100 microseconds-1 for all three gaseous ligands, whereas both Q and kB----MbX vary over 3 orders of magnitude (i.e. NO, Q = 0.001, kB----MbX approximately equal to 16,000 microseconds-1; O2, Q = 0.1, kB----MbX approximately equal to 500 microseconds-1; CO, Q = 1.0, kB----MbX approximately equal to 2 microseconds-1). Second, for NO, O2, and the isonitriles, the rate-limiting step in the overall association reaction starting from ligand in solution is the formation of state B. The rate constant for this process varies from 2 X 10(7) M-1 s-1 for the gaseous ligands to 0.02-1.4 X 10(5) M-1 s-1 for the isonitriles. In contrast, the B to MbX transition is limiting for CO binding. Third, for all the ligands except CO, the overall rate of dissociation is limited significantly both by the rate of thermal bond disruption, kMbX----B, and the competition between geminate recombination and migration away from the distal pocket (i.e. kB----C/(kB----MbX + kB----C]. In the case of CO, the rate of bond disruption is equal to the observed dissociation rate constant.  相似文献   

17.
Cryogenic samples of MbCO at pH3 are studied using nanosecond and picosecond time-resolved resonance Raman spectroscopy. It is observed that under excitation conditions sufficient to completely photodissociate MbCO at pH7, the pH3 sample at 10 ns remains substantially unphotolyzed even at 15 K. The similarity in the optical and resonance Raman spectra of MbCO at pH3 with that of pH7 indicates that at pH3 the iron remains six-coordinate and low-spin. The Fe-CO stretch frequency is consistent with a more upright CO orientation. The absence of the v(Fe-His) band in the 30 ps photoproduct Raman spectrum suggests that the Fe-His(F8) bond is broken within 30 ps of photodissociation. Other Raman bands, though, are not consistent with a normal four-coordinate heme for the photoproduct, Mb*. Suggested possible interpretations include a four-coordinate heme highly perturbed by the close lying protonated proximal histidine or a five-coordinate heme with the Fe-His bond significantly weakened. The partial photolysis monitored at 30 ps and 100 K indicates either a significant amount of geminate recombination within 30 ps or low quantum yield or photolysis. The time course for CO recombination is monitored via the Raman spectra from 30 ps to 3 ns at 100 K and 160 K. Of the fraction of protein-ligand pairs that remain photodissociated at 30 ps, 50% recombine by approximately 250 ps at 100 K and 160 K, supporting the flash photolysis rebinding data of Cowen et al. (Cowen, B. R. 1990. Ph. D. thesis. University of Illinois at Urbana-Champaign; Cowen, B. R., D. Braunstein, H. Frauenfelder, P. J. Steinbach, and R. D. Young. 1989. Biophys. J. 55:55a. [Abstr.].) The conclusions from these resonance Raman studies are extended to solution phase studies at ambient temperatures.  相似文献   

18.
Ligand recombination to the alpha and beta subunits of human hemoglobin   总被引:1,自引:0,他引:1  
The rebinding of CO, O2, NO, methyl, ethyl, n-propyl, and n-butyl isocyanide to isolated alpha and beta chains and intact hemoglobin at pH 7, 20 degrees C was examined both during and after a 30-ns dye laser pulse. The resultant absorbance changes were analyzed in terms of a linear three-step reaction scheme: Hb + X in equilibrium with C in equilibrium with B in equilibrium with A or HbX, where A is the final bound state, and C and B are geminate states. Rate constants were assigned for each of the transitions in this mechanism using fitting procedures described previously for analyzing ligand rebinding to sperm whale myoglobin at room temperature (Gibson, Q. H., Olson, J. S., McKinnie, R. E., and Rohlfs, R. J. (1986) J. Biol. Chem. 261, 10228-10239). Five major conclusions were obtained. First, initial geminate recombination phases for the NO and O2 complexes of hemoglobin and its isolated subunits exhibit half-times equal to approximately 12 and approximately 440 ps, respectively. These values are in excellent agreement with more direct, picosecond measurements of the geminate recombination of HbNO (Cornelius, P. A., Hochstrasser, R. M., and Steele, A. W. (1983) J. Mol. Biol. 163, 119-128) and HbO2 (Friedman, J. M., Scott, T. W., Fisanick, G. J., Simon, S. R., Findsen, E. W., Ondrias, M. R., and MacDonald, V. W. (1985) Science 229, 187-229) following extremely short laser pulses. Second, the correspondence between our nanosecond measurements and the published picosecond data suggests strongly that the intrinsic photochemical yield of all ferrous, hexacoordinate heme complexes approaches one. Third, the major differences between the isolated alpha and beta chains involve the rate of ligand migration to the solvent, kC----X and the extent of recombination from the second geminate state, C, as measured by the ratio kC----B/kC----X. Fourth, for both isolated chains and intact hemoglobin, the rate and equilibrium constants for the formation of the initial O2 geminate state starting from ligand in the solvent (i.e. kX----B and KX----B) are 5-10 times greater than the corresponding parameters for the formation of the first CO geminate state. Fifth, the rate-limiting step for NO, O2, and isonitrile binding to hemoglobin and its isolated subunits is ligand migration up to the initial geminate state (i.e. kX----B). In the case of CO binding, both migration to state B and iron-ligand bond formation (kB----A) affect the overall, bimolecular association rate constant.  相似文献   

19.
M?ssbauer spectra of 57Fe-enriched NADH-reduced yeast cytochrome c oxidase reveal two quadrupole doublets of unequal intensity; one (approximately 33%) is typical of high-spin ferrous heme with histidine coordination and is assigned to heme a3, while the other (approximately 67%) is typical of low-spin heme with two nitrogeneous axial ligands as expected from heme a. The excess intensity (approximately 17%) of the low-spin doublet must therefore be assigned to heme a3 in a modified environment. The M?ssbauer spectra of the same sample exposed to CO show that 50% of the heme iron forms a CO adduct, consistent with heme a3 being inhibited by CO. While low-spin hem a has the same M?ssbauer parameters as in the reduced sample, its intensity has dropped to 35%. A distinctly new high-spin species (approximately 15%) is observed and assigned to heme a in a modified environment. The comparable size of the unexpected high-spin heme a fraction in the CO adduct and the low-spin heme a3 fraction in the reduced enzyme suggest that they arise from the same material. This material is likely to be the inactive fraction that has been found in all preparations of resting yeast cytochrome c oxidase (Siedow, J.N., Miller, S., and Palmer, G. (1981) J. Bioenerg. Biomembr. 14, 171-179). The kinetics of CO recombination following photolysis of the CO complex further confirms the coexistence of two distinct fractions associated with active and inactive protein. The majority (approximately 74%), presumably active protein, recombines exponentially from 160 to 270 K following an Arrhenius law. The large activation enthalpy, delta H approximately 35 kJ/mol, is comparable to that found in the beef heart enzyme, suggesting that the flashed-off CO is bound by the nearby CuB as in the mammalian system (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 250, 1639-1650). In the minority, presumably inactive, fraction the CO recombination has fast nonexponential kinetics with a distribution of activation enthalpies peaking near delta Hp = 13 kJ/mol reminiscent of CO binding to myoglobin. In this inactive fraction CuB is apparently not accessible to the flashed-off CO.  相似文献   

20.
These experiments indicate that absorbance changes observed at the 425 nm isosbestic point of the Hb and HbCO following laser photolysis of HbCO provide a direct measure of the rates of quaternary conformational changes between rapidly reacting Hb (the immediate product of full photolysis) and slowly reacting normal deoxyhemoglobin. Hb, first observed by Gibson (Gibson, Q.H. (1959) Biochem. J. 71, 293-303), Has been interpreted as deoxyhemoglobin remaining in the liganded quaternary conformation following rapid removal of ligand by a light pulse. In borate buffers between pH 8.4 and 9.6 particularly simple pH-independent results were obtained which allowed the use of a Monod. Wyman, and Changeux model (Monod, J., Wyman, J., and Changeux, J (1965) J. Mol. Biol. 12, 88-118) to fit the data. In this case Hb is taken to be R state deoxyhemoglobin. Partial photolysis experiments at 425 nm show that the rate of the R - T conformational change at 20 degrees decreases by about a factor of 2 for each additional bound ligand. The rate of the ligand-free conformational change is found to be 920 +/- 60s(-1), 6400 +/- 600s(-1), and 15,700 +/- 700(-1) respectively at 3 degrees, 20 degrees, and 30 degrees. The previously uninterpreted effects of flash length and partial photolysis on the CO recombination kinetics can be explained in terms of the present model. Kinetic results obtained below pH 8 are found to be inconsistent with a two-state model. It appears that binding of inositol hexaphosphate produces a new rapidly reacting quaternary conformation of HbCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号