首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

2.
We have demonstrated previously that a variety of agents including corticosteroids, thyroid hormone, cationophores, methylxanthines, and analogues of cAMP--all of which have diversified functions in various tissues--elevate cellular angiotensin converting enzyme (ACE) activity of bovine endothelial cells in culture. In addition to these agents, we have now found that direct and receptor-mediated stimulators of adenylate cyclase, i.e., forskolin and cholera toxin, increase cellular ACE activity after 48 h incubation in culture. In an attempt to search out a more unifying concept of these stimulatory effects, we have further investigated the roles of second messengers in the stimulatory actions. Ca2+ ionophore A23187 produced significant increases in both intracellular Ca2+ and ACE of endothelial cells. In contrast to Ca2+ ionophore, agents that transiently mobilize Ca2+ from intracellular reserves such as bradykinin, acetylcholine, and ATP have no effect on the level of cellular ACE. Representative agents that elevate cellular cAMP (e.g., isobutyl methylxanthine [IBMX] and dibutyryl cAMP) elevated cellular ACE, but the slightly increased [Ca2+]i produced by these agents did not reach statistical significance. While IBMX, cholera toxin, and forskolin elevated cellular cAMP, other ACE stimulatory agents (hormones and cationophores) had no effect on cAMP. Ca2+ ionophore and the agents that elevated intracellular cAMP potentiated the effect of dexamethasone, thyroid hormone, and aldosterone in elevating cellular ACE activity. Increases in ACE activity produced by all stimulants were inhibited by the presence of 10-50 nM ouabain in the culture medium. Inhibition of ACE elevation by oubain was reversed by increasing the extracellular [K+], thereby implicating Na+, K(+)-ATPase in the ACE regulatory mechanism. These results support the presence of multiple independent mechanisms for the regulation of cellular ACE. In addition to possible involvement of intracellular Ca(2+)- and cAMP-dependent pathways, ACE is also increased by corticosteroids and thyroid hormone through mechanisms unrelated to Ca2+ and cAMP.  相似文献   

3.
Saijonmaa O  Nyman T  Kosonen R  Fyhrquist F 《Cytokine》2000,12(8):1253-1256
OBJECTIVE: To examine the role of oncostatin M (OSM) in the regulation of angiotensin converting enzyme (ACE) in endothelial cells. METHODS: Cultured endothelial cells were incubated with OSM (25-200 pM) for 24 h. Incubations were performed without or with the tyrosine kinase inhibitor, herbimycin (87 nM), or the selective MAP kinase kinase inhibitor, PD98059 (50 microM). ACE amount in intact endothelial cells was measured by an inhibitor binding assay and ACE mRNA levels by RNase protection assay. RESULTS: OSM caused a dose dependent increase in ACE amount and increased the expression of ACE mRNA. The stimulatory effect of OSM was inhibited by pretreatments with herbimycin or PD98059. CONCLUSIONS: OSM induced ACE in cultured HUVECs. Tyrosine kinase and MAPK activation were probably involved in ACE induction. Local induction of ACE by OSM in the vascular wall may be a consequence of inflammatory processes leading to locally increased production of angiotensin II and breakdown of bradykinin.  相似文献   

4.
5.
The activity of angiotensin converting enzyme (ACE) in cell lysate of cultured human umbilical vein endothelial cells (HUVEC) after a 24-hour incubation with 10(-3) and 10(-4)M of paraquat (PQ) was decreased. However, LDH released into the culture medium of HUVEC during the 24-hour incubation with PQ was not increased. Many investigators show that the change in serum ACE activity reflects the impairment of vascular endothelial cells. We showed in this report that ACE was decreased even at an early stage of endothelial injury induced by PQ, when LDH release is not yet increased.  相似文献   

6.
Release of angiotensin I-converting enzyme by endothelial cells in vitro   总被引:1,自引:0,他引:1  
Bovine fetal aortic endothelial cells cultured in serum-containing medium accumulate angiotensin I-converting enzyme (ACE) activity and also release it into the culture medium. Following subcultivation of a confluent culture using trypsin-EDTA, cellular ACE activity falls 50% within 8 h, but no ACE activity is detected in the medium, suggesting intracellular loss of the enzyme activity. ACE activity reappears in both the cell lysate and culture medium after the culture becomes confluent. The rate of accumulation of ACE activity released into the medium is always greater than that for cellular activity. For example, 21 days following subcultivation 80-85% of the total culture activity is detected in the medium. Both cellular and medium-associated ACE decrease proportionately as the culture progresses through its in vitro lifespan.  相似文献   

7.
Induction of vascular endothelial cells with pituitary fibroblast growth factor (FGF) provoked an increase in angiotensin converting enzyme activity. The stimulatory effect of FGF on ACE activity was dose-dependent (ED50 = 1.0 ng/ml). Our results suggest a possible role for pituitary FGF in regulation of ACE production in vascular endothelial cells.  相似文献   

8.
9.
Incubation of cultured bovine pulmonary artery endothelial cells with 200 microM of 3-isobutyl-1-methylxanthine (IBMX) for 24 hr produced a five- to tenfold increase in cellular angiotensin converting enzyme activity (ACE) above that of untreated control cells. A lesser increase was observed in medium ACE. Other methylxanthines produced a similar, but less marked, effect. The elevation of ACE seemed to require de novo protein synthesis since it was reduced by 0.1 microgram/ml cycloheximide. Elevation of cellular cAMP was detected at 30 min after introduction of IBMX, then rapidly returned to control levels at 1 hour, while elevation in cellular ACE at 24 hr required contact with IBMX for at least 2 hr. Hence, the transient elevation in cAMP is unlikely to be the cause of the elevation of ACE. Phorbol ester and synthetic diacyl glycerol OAG, activators of protein kinase C, did not elevate ACE. Indomethacin, at a concentration known to inhibit cyclooxygenase activity, had no effect on the elevation of ACE. The elevation of ACE by IBMX was not affected by the calcium channel blocker verapamil or the calcium chelator EGTA. In contrast, the effect of IBMX was totally abolished by the calmodulin inhibitors trifluoperazine and calmidazolium. The data show that IBMX elevates endothelial cell ACE and suggest that the elevation is mediated by a calcium-calmodulin complex. The studies demonstrate a novel effect of methylxanthines on endothelial cells in culture.  相似文献   

10.
Angiotensin-converting enzyme (ACE) plays a major role in the metabolism of bradykinin, angiotensin, and neuropeptides, which are all implicated in inflammatory airway diseases. The activity of ACE, which is localized on the luminal surface of endothelial cells (EC), has been well documented in pulmonary EC; however, few data exist regarding the relative activity of ACE in the airway vasculature. Therefore, we measured ACE activity in cultured EC from the sheep bronchial artery and bronchial mucosa (microvascular) and compared it with pulmonary artery EC. The baseline level of total ACE activity (cellular plus secreted) was significantly greater in bronchial microvascular EC (1.24 +/- 0.24 mU/106 cells) compared with bronchial artery EC (0.59 +/- 0.15 mU/106 cells; P < 0.05) and comparable to pulmonary artery EC (1.12 +/- 0.14 mU/106 cells; P > 0.05). Measured ACE activity secreted into culture medium for each cell type was 64-74% of total activity and did not differ among the three EC types (P = 0.17). Hydrocortisone (10 microg/ml; 48-72 h) treatment resulted in a significant increase in ACE activity in bronchial EC. Likewise, TNF-alpha (0.1 ng/ml) treatment markedly increased ACE activity in all cell lysates (P < 0.05). We confirmed the importance of ACE activity in vivo since, at the highest dose of bradykinin studied (10-8 M), bronchial artery pressure at constant flow showed a greater decrease after captopril treatment (36% before vs. 60% after; P = 0.05). These results demonstrate high ACE expression of the bronchial microvasculature and suggest an important regulatory role for ACE in the metabolism of kinin peptides known to contribute to airway pathology.  相似文献   

11.
Experiments were conducted to determine (1) whether glucocorticoids directly protected endothelial cells (EC) from radiation and (2) if angiotensin converting enzyme (ACE) activity, known to be increased by glucocorticoid, played a role in the EC response to radiation. Confluent monolayers of EC cultured from bovine aorta EC were treated with dexamethasone (10(-6) M); after irradiation (5.0 Gy, 60Co gamma), ACE and lactate dehydrogenase (LDH) activities, DNA and protein contents, and nuclei number were measured. Twenty-four hours after 5 Gy, there was increased cell loss (-40%, P less than 0.001), greater LDH release (greater than 100%, P less than 0.001), more LDH activity per cell (+40%, P less than 0.001), and unchanged ACE activity compared to sham-irradiated control EC. However, 48 hr after 5 Gy, ACE activity per cell was decreased (-24%, P less than 0.005). A 48-hr exposure to dexamethasone alone was accompanied by a slight cell loss (-10%, P less than 0.001) and increased cellular ACE activity (+40-140%, P less than 0.001), but a 24-hr dexamethasone exposure was not cytotoxic and did not change ACE activity. Dexamethasone exposure for 48 hr before and after irradiation did not attenuate cell loss or LDH release. However, combined dexamethasone treatment and radiation increased cellular ACE activity at a time when neither agent alone had an effect (24-hr dexamethasone exposure before 5 Gy and assayed 24 hr after 5 Gy). This interaction between radiation and dexamethasone treatment suggests that the glucocorticoid modifies the cell's response to injury. Although this interaction does not ameliorate radiation cytotoxicity, maintenance of ACE levels in injured vessels by hormones may have physiological significance in the hemodynamics of irradiated tissues.  相似文献   

12.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of cyclic nucleotides, isoproterenol (beta adrenergic agonist), and theophylline (phosphodiesterase inhibitor) on angiotensin-I-converting enzyme (ACE) activity of the cells and culture medium. Dibutyryl cAMP (10(-3) M) but not cAMP or dibutyryl cGMP stimulated angiotensin-I-converting enzyme (ACE) activity of cells in culture approximately 50-100% but had little influence on ACE activity of the medium. Theophylline at 10(-3) M concentration produced a three- to fourfold stimulation of both cellular and medium ACE activity. Isoproterenol by itself had no effect on cellular ACE activity but produced a stimulatory effect at 10(-7)-10(-5) M concentration after pretreatment of cells for 24 hr with 10(-4) M theophylline. The results support the concept that ACE activity of endothelial cells is influenced by the cyclic AMP system. ACE activity in cells and that released into medium may be under different regulatory controls.  相似文献   

13.
The modulation of angiotensin converting enzyme (ACE) levels was studied using fucosterol, one of phytosterols, in cultured bovine carotid endothelial cells. Addition of fucosterol to the culture medium resulted in the decrease of ACE activity of endothelial cells; however, fucosterol did not directly inhibit ACE activity. Dexamethasone elevated the levels of ACE in normal cells, but this effect was not seen in the fucosterol-treated cells. Receptor assays showed that the amount of glucocorticoid receptors in fucosterol-treated cells decreased to an undetectable level. These results indicate that fucosterol lowers the ACE levels on the endothelial cells by inhibiting the synthesis of glucocorticoid receptors involved in the regulation of ACE levels.  相似文献   

14.
Levels of angiotensin converting enzyme (ACE) in cultured bovine pulmonary artery endothelial cells treated with dexamethasone, aldosterone, 3,3',5'-triiodo-L-thyronine, Ca2+ ionophore, 3-isobutyl-1-methylxanthine, dibutyryl cAMP and forskolin were quantitated by an enzyme linked immunosorbent assay (ELISA). The configuration for the ELISA consisted of purified bovine lung ACE adsorbed to a solid phase competing with endothelial cellular ACE for a limited amount of anti-ACE immunoglobulin. ACE-IgG complex on the solid phase was detected by goat anti-rabbit IgG-alkaline phosphatase conjugate with enzymatic activity measured by p-nitrophenylphosphate as substrate. This ELISA detected ACE with a sensitivity of 32 ng/ml cellular ACE. Elevation in cellular ACE catalytic activity as measured by fluorescent assay of detergent extracts from bovine endothelial cells corresponded well with an increase in ACE protein as determined by the ELISA. These results provide direct evidence that increases in catalytic activity of ACE produced in endothelial cells by a variety of agents result from enhancement of the synthesis of ACE protein.  相似文献   

15.
The conversion of angiotensin I (AT-I) to angiotensin II (AT-II) by angiotensin I-converting enzyme (ACE) is a key step in the action of angiotensins. ACE is constitutively expressed in endothelial cells, but can also be detected at low levels in smooth muscle cells (SMC). Furthermore, in rats the ACE activity can be induced in SMC in vivo by experimental hypertension or vascular injury and in vivo by corticoid treatment. This study was therefore undertaken to evaluate the conversion of AT-I and its subsequent effects in SMC in basal conditions and after stimulation by dexamethasone. Using rat and human SMC, showed that dexamethasone induced ACE expression and that this enzyme was functional, leading to AT-II-dependent intracellular signaling. A fourfold increase in phospholipase C activity in response to AT-I was observed in dexamethasone-activated SMC compared with quiescent SMC. This effect of dexamethasone on signal transduction is dependent on ACE activity, whereas AT-II receptor parameters remain unchanged. The action of AT-I was blocked by an AT1 receptor antagonist, suggesting that it was mediated by AT-II. Similarly, dexamethasone-induced ACE expression was present in human SMC, and calcium signaling was mobilized in response to AT-I in activated human cells. Experiments performed with cocultures of endothelial cells and SMC in a Transwell system showed that the response to AT-I was limited to the compartment where AT-I was localized, suggesting that AT-I does not pass through the endothelial cell barrier to interact with underlying SMC. Our data suggest that in rat, as in human SMC, the conversion of AT-I into AT-II and the signal transduction in response to AT-I are ACE expression-dependent. In addition, the present findings show that this SMC response to AT-I is endothelium-independent, supporting the idea of a local generation of AT-II in the vascular wall.  相似文献   

16.
The localization of immunoreactive angiotensin I-converting enzyme (ACE) has been investigated at the optical and ultrastructural level with anti-human ACE antibodies in the human kidney and small intestine. In both tissues ACE was found in blood vessels and in extravascular situation in the absorptive epithelial cells of intestinal mucosa and renal proximal tubules. Ultrastructural immunohistochemistry showed that in intestinal and renal proximal tubular cells ACE was prominent in microvilli and brush borders. In the kidney ACE was also present on the basolateral part of the plasmalemmal membrane, where it may contribute to the regulation of angiotensin II-dependent absorption processes. Intracellular positivities were also observed inside the renal vascular endothelial and proximal tubular cell in endoplasmic reticulum and nuclear envelope reflecting the synthesis and the cellular processing of ACE. The intestinal microvascular endothelium was strongly labeled suggesting that the mesenteric circulation is an important site for the production of angiotensin II. Vascular endothelial ACE was also detected in the peritubular but not glomerular capillaries of the kidney.  相似文献   

17.
Summary The localization of immunoreactive angiotensin I-converting enzyme (ACE) has been investigated at the optical and ultrastructural level with anti-human ACE antibodies in the human kidney and small intestine. In both tissues ACE was found in blood vessels and in extravascular situation in the absorptive epithelial cells of intestinal mucosa and renal proximal tubules. Ultrastructural immunohistochemistry showed that in intestinal and renal proximal tubular cells ACE was prominent in microvilli and brush borders. In the kidney ACE was also present on the basolateral part of the plasmalemmal membrane, where it may contribute to the regulation of angiotensin II-dependant absorption processes. Intracellular positivities were also observed inside the renal vascular endothelial and proximal tubular cell in endoplasmic reticulum and nuclear envelope reflecting the synthesis and the cellular processing of ACE. The intestinal microvascular endothelium was strongly labeled suggesting that the mesenteric circulation is an important site for the production of angiotensin II. Vascular endothelial ACE was also detected in the peritubular but not glomerular capillaries of the kidney.  相似文献   

18.
The rat aorta, whose three wall layers can be separated by microdissection offers the rare possibility of comparing physiological characteristics of in vivo tissular cell components and corresponding cells after culture.We developed a technique allowing the dissociation of the three tunicae (intima, media and adventitia) of the rat aorta and the culture of their main cell types i.e: endothelial cells (EC) from intima, smooth muscle cells (SMC) from media and fibroblasts (Fib) from adventitia. Comparison between selected tunicae in vivo and their corresponding cells in vitro was performed via arterial angiotensin converting enzyme (ACE) activity measurements in Wistar rats.In vivo microsomial ACE activity for each tunica was as follows: 368.9 ± 34.3 (endothelium), 10.5 ± 1.9 (media) and 10.2 ± 4.9 (adventitia) pmol/mg protein/min. Corresponding cell primary culture values were 1.2 ± 0.1 (EC), 0.06 ± 0.02 (SMC) and 0.24 ± 0.01 (Fib) pmol/mg protein/min. Incubation of serum-deprived cells with Dexamethasone (10−7M) over 48 hr induced a statistically significant shift of total ACE activity from controls to stimulated cells of 2.9 ± 0.3 to 9.7 ± 1.0 in EC, 0.8 ± 0.1 to 32.1 ± 4.9 in SMC and 1.03 ± 0.65 to 57.2 ± 2.1 pmol/ mg prot/min in fibroblasts.In the rat aorta, ACE was present not only in the intimal endothelial cell lining, but also in the media and the adventitia. ACE activity levels in primary cultured vascular cells were about 100-fold less than those found in the ex vivo tissues. Nevertheless, ACE expression seems to be more constitutive in endothelial cells and more inducible in smooth muscle cells and fibroblasts. This methodological approach should be of interest in studying environmental or genetic regulation of protein expression in the three layers/three cell types of the vascular wall.  相似文献   

19.
Summary Previous work has suggested that not all immunoreactive angiotensin-converting enzyme (ACE) in tissues or cells is in a biologically active state. We have explored this possibility in cultured human umbilical vein endothelial cells (HUVEC), one of the most widely studied in vitro endothelial cell systems. Our approach included characterization of the effect of increasing passage number on ACE activity and expression of immunoreactive ACE at the single cell level, the subcellular compartmentalization of active ACE, and the effect of phorbol ester (PMA) treatment. We found that both ACE activity and expression of ACE antigen were downregulated by cultivation (30% of ACE-positive cells at seventh passage vs. 90% in primary culture). ACE downregulation is specific (number of CD31-positive cells did not change with cultivation) and correlated with downregulation of factor VIII-antigen. The percentage of ACE-positive cells in permeabilized HUVEC at third passage was almost twice that in nonpermeabilized HUVEC (90% vs. 50%), indicating that HUVEC contain intracellular immunoreactive ACE. ACE activity, however, was similar when measured in intact cells and in cell lysates. Moreover, diazonium salt of sulfanilic acid (DASA), a membrane-impermeable ACE inhibitor, inhibited ACE activity in intact cells and in cell lysates at the same extent, thus implying that intracellular ACE is inactive. PMA (100 nM) treatment increased the percentage of ACE-positive cells at third passage from 57 to 96%. ACE activity was increased 3-fold in cell and 1.5-fold in the culture medium of PMA-treated cells. Analysis of ACE activity in intact monolayers and cell lysates of control and PMA-treated cells revealed that all enzymatically active ACE in PMA-treated cells is localized on the plasma membrane and acts as an ectoenzyme. We conclude that expression of ACE by HUVEC is downregulated by repeated passage in culture but can be restored by PMA treatment. In addition, ACE expression is heterogeneous between neighboring cells, and total immunoreactive ACE protein associated with HUVEC includes an inactive pool of the enzyme.  相似文献   

20.
The development of atherosclerotic plaque is associated with neovascularization in the thickened intima and media of vascular walls. Neovascularization may have a role in the progression of atherosclerotic plaque as well as in the development of intraplaque hemorrhage. However, the mechanism and stimulus for neovascularization in atherosclerotic plaque are unknown. We postulated that smooth muscle cells (SMCs), a major cellular component in the vascular wall, might contribute to the induction of neovascularization in atherosclerotic plaque through the secretion of an angiogenic factor. We observed that endothelial cells (ECs) cultured on collagen gel with SMC-conditioned medium became spindle shaped, invaded the underlying collagen gel, and organized a capillary-like branching cord structure in the collagen gel. The conditioned medium also stimulated EC proliferation and increased the EC-associated plasminogen activator activity. The angiogenic factor in SMC-conditioned medium was retained in a heparin-Sepharose column and eluted with 0.9 M NaCl. Neutralizing anti-vascullar endothelial growth factor (VEGF) antibody attenuated the angiogenic activity in the conditioned medium, including the induction of morphologic changes in ECs, mitogenic activity, and increased plasminogen activator activity associated with ECs. Immunoblotting analysis confirmed the secretion of VEGF from SMCs. These observations indicate that SMC may be responsible for the neovascularization in atherosclerotic plaque through the secretion of VEGF. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号