首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytohormones were screened for their effects on induction of coiling and prehaustoria in de-etiolated excised dodder seedlings under different light treatments. Zeatin stimulated coiling and the formation of prehaustoria under all light tested, even in darkness. A synergistic effect was observed with zeatin and far-red light (700–800 nm) but not with red light (600–700 nm) on the formation of prehaustoria. Application of indole-3acetic acid inhibited zeatin-induced coiling and prehaustoria development under blue (400–500 nm) and a mixture of red plus far-red light, but not in blue plus far-red light. Ethylene had no effect on coiling and prehaustoria development. Observations suggest that zeatin-induced coiling and prehaustoria development may be mediated by phytochrome.  相似文献   

2.
Biosynthesis of chlorophyll is partly controlled by the phytochrome system. In order to study the effects of an activated phytochrome system on the protochlorophyllide (PChlide) biosynthesis without accompanying phototransformation to chlorophyll, wheat seedlings (Triticum aestivum L. cv. Starke II Weibull) were irradiated with long wavelength far-red light of low intensity. Absorption spectra were measured in vivo after different times in the far-red light or in darkness. The relationship between the different PChlide forms, the absorbance ratio 650nm636 nm changed with age in darkness, and the change was more pronounced when the leaves were grown in far-red light. Absorption spectra of dark-grown leaves always showed a maximum in the red region at 650 nm. For leaves grown in far-red light the absorption at 636 nm was high, with a maximum at the 5 day stage where it exceeded the absorption at 650 nm. At the same time there was a maximum in the total amount of PChlide accumulated in the leaves, about 30% more than in leaves grown in darkness. But the amount of the directly phototransformable PChlide, mainly PChlide650–657, was not increased. The amount of PChlide628–632, or more probably the amount of (PChlide628–632, + PChlide 636–657) was thus higher in young wheat leaves grown in far-red light than in those grown in darkness. After the 5 day stage the absorption at 636 nm relative to 650 nm decreased with age, and at the 8 day stage the spectra were almost the same in both types of leaves. Low temperature fluorescence spectra of the leaves also showed a change in the ratio between the different PChlide forms. The height of the fluorescence peak at 632 nm relative to the peak at 657 nm was higher in leaves grown in far-red light than in dark-grown leaves. – After exposure of the leaves to a light flash, the half time for the Shibata shift was measured. It increased with age both for leaves grown in darkness and in far-red light; but in older leaves grown in far-red light (7–8 days) the half time was slightly longer than in dark-grown leaves. – The chlorophyll accumulation in white light as well as the leaf unrolling were faster for leaves pre-irradiated with far-red light. The total length of the seedlings was equal or somewhat shorter in far-red light, but the length of the coleoptile was markedly reduced from 8.1 ± 0.1 cm for dark-grown seedlings to 5.2 ± 0.1 cm for seedlings grown in far-red light.  相似文献   

3.
Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.  相似文献   

4.
To gain a better understanding of how photosynthesis is adapted under altered gravity forces, photosynthetic apparatus and its functioning were investigated in rice (Oryza sativa L.) seedlings grown in a random positioning machine (RPM). A decrease in fresh weight and dry weight was observed in rice seedlings grown under RPM condition. No significant changes were found in the chloroplast ultrastructure and total chlorophyll content between the RPM and control samples. Analyses of chlorophyll fluorescence and thermoluminescence demonstrate that PSII activity was unchanged under RPM condition. However, PSI activity decreased significantly under RPM condition. 77 K fluorescence emission spectra show a blue-shift and reduction of PSI fluorescence emission peak in the RPM seedlings. In addition, RPM caused a significant decrease in the amplitude of absorbance changes of P700 at 820 nm (A 820) induced by saturated far-red light. Moreover, the PSI efficiency (Φ I) decreased significantly under RPM condition. Immunoblot and blue native gel analyses further illustrate that accumulation of PSI proteins was greatly decreased in the RPM seedlings. Our results suggest that PSI, but not PSII, is down-regulated under RPM condition.  相似文献   

5.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

6.
光质与补光对水稻幼苗生长及光合速率的影响   总被引:3,自引:0,他引:3  
测定水稻成龄离体叶片在波长380~800nm下的透射率,推算其吸收光谱;在培养室内,观测水稻幼苗在蓝(475±5nm)、黄(585±5nm)、红(660±5nm)色的半导体(LED)和普通日光灯下的生长状况,每天照光12h;同时,在大棚中将刚萌发的水稻幼苗白天自然日照,每晚(18:00~24:00)人工补蓝、红、黄、白光各0、2、4、6h,定期观测其生长情况,在补光50d后测成龄叶片的光合曲线。结果发现:水稻叶片在波长400~500nm之间及680nm附近有较强吸收;在不同光质下进行培养,单波蓝光对水稻幼苗的生长最好;补光对水稻幼苗生长均有促进作用,其中补白光4h效果最明显,其次是补黄光2h;补蓝光2、4h和补白光4h提高植株的光合能力。  相似文献   

7.
Seven day old etiolated Zea mays L. (cv. Wisconsin 355) seedlings were illuminated for 20 h under monochromatic radiations (100 Á pass band) produced by a spectral illuminator of high energy. Four regions of the visible spectrum were observed to stimulate chlorophyll synthesis. With poorly developed leaves (grown for 7 days at 22°C: experiment A). the most efficient wavelengths were found to be in the blue and green (between 445 and 505 nm). yellow (between 580 and 605 nm) and red (maximum 650 nm) parts of the spectrum. With well developed leaves (grown for 7 clays al 27°C: experiment B), a slight displacement of the maxima towards shorter wavelengths was observed. 14C-acetate was furnished to illuminated maize seedlings to follow lipid synthesis during greening. In the leaves of experiment A, the biosynthesis of α-linolenic acid and monogalactosyldiacylglycerol followed chlorophyll accumulation. In the more developed leaves of experiment B. containing higher amounts of galactolipids, the biosynthesis of α-linolenic acid and monogalactosyldiacylglycerol followed chlorophyll accumulation only in blue and yellow light. The biosynthesis of trans-3-hexadecenoic acid was strictly dependent on the wavelength of the irradiating light in the leaves of experiment A; it was optimal under blue (420 nm) and still very high under yellow (580 nm) and red (650 nm). In the more developed leaves of experiment B, it was optima in blue (445 nm) and in yellow (580 nm), and the red maximum was shifted to 630 nm. All C-trans-3-hexadecenoic acid was incorporated into phosphatidylglycerol. A marked relationship was observed between the intensity of galactolipid synthesis and the development of the lamellar system of maize plastids during greening. A positive correlation could be established between the biosynthesis of trans-3-hcxadeccnoie acid and the development of well constituted grana stacks in the plastids.  相似文献   

8.
Oak seedlings (Quercus robur L.) were germinated in darkness for 3 weeks and then given continuous long wavelength far-red light (LFR; wavelengths longer than 700 nm). A control group of seedlings was kept in darkness. After 2 additional weeks the chlorophyll formation ability in red light was examined in the different seedlings. The stability of the protochlorophyll(ide) and chlorophyll(ide) forms to high intensity red irradiation was also measured. Oak seedlings grown in darkness accumulated protochlorophyll(ide) (6 μg per g fresh matter). Absorption spectra and fluorescence spectra indicated the presence of more protochlorophyll(ide)628–632 than protochlorophyllide650–657. The level of protochlorophyll(ide) was higher in leaves of plants cultivated in LFR light (13 μg per g fresh matter) than in leaves of dark grown plants. 12% of the protochlorophyll(ide) was esterified in both cases. The level of protochlorophyll(ide)628–632 in LFR grown oaks varied with the age of the leaves, being higher in the older (basal) leaves, but also in the very youngest (top-most) leaves. The ability of the leaves to form photostable chlorophyll in red light showed a similar age dependence, being low in rather young and in older leaves. A low ability to form photostable chlorophyll thus appears to be correlated with a high content of protochlorophyll(ide)628–632. Upon irradiation only the protochlorophyllide650–657 was transformed to chlorophyllide. After this phototransformation the chlorophyllide peak at 684 nm shifted to 671 nm within about 30 min in darkness. This shift took place without any accompanying change in photostability of the chlorophyll(ide). Upon irradiation with strong red light a similar shift took place within one minute. This indicates that the chlorophyllide after phototransformation was rather loosely bound to the photoreducing enzyme. The development towards photostable chlorophyll forms consists of three phases and is discussed.  相似文献   

9.
Cucumber (Cucumis sativus L. cultivar "Changchun Mici") seedlings were cultured in Hoagland solution under irradiation with different light spectra (8 h per day) for 20 days. The red light (λmax 658 nm, λ1/2 25 nm), blue light (λmax 450 nm, λ1/2 43 nm) and white fluorescent light possessed the same fluent rate (20 μmol· m-2·s-1 ). The experimental results showed that chlorophyll content of the leaves grown under white light was 7 % and 22.4% higher than those in red and blue light, respectively. Compared with white and blue light, red light induced a lower Chl a/b ratio and a higher level of Chl b in the cucumber leaves. Measurements of the low temperature (77 K) fluorescence emission spectra and kinetics of Chl a fluorescence induction of the leaves proved that the leaves grown under red light expressed the highest PSⅡ and the lowest PSⅠactivities while the leaves under blue light had the lowest PSⅡand the highest PSⅠ activities. The O2 evolution rate of red light-grown leaves was 44.9% higher than that of the white light-grown leaves, while blue light effect was similar to that of white in respect of O2 evolution. It is concluded that light quality is an important factor in regulating the development and activities of PSⅡ and PSⅡand the O2 evolution of photosynthesis in cucumber leaves.  相似文献   

10.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

11.
Oak Seedlings Grown in Different Light Qualities   总被引:2,自引:0,他引:2  
Seedlings of oak (Quercus robur) were germinated in darkness for 3 weeks and then given continuous light or short pulses of light (5–8 min every day). The morphological development was followed during 25 days. In continuous white, blue, and red light the stem growth terminated after about 10 days by formation of a resting bud. At that time the seedlings were about 100 mm high. In con tinuous long wavelength farred light (wavelength longer than 700 nm) the stem growth including leaf formation was continuous without the formation of resting buds, and the stem length was about 270 mm after 25 days. The number of nodes developed became twice that of the seedlings grown in while light. The leaves became well developed in all light colours, but leaf areas were largest in plants cultivated in white light. Compared to dark grown seedlings the mean area per leaf was increased about five times in continuous long wavelength far red light. A supplement with short (5 min) pulses of red light each day increased the leaf area up to 20 times. The stem elongation showed a high energy reaction response, i.e. the stem length increased only in continuous long wavelength far-red light but was not influenced by short pulses of red light or far-red light. The leaf expansion, however, was increased by short pulses of red light with a partial reversion of the effect by a subsequent pulse of far-red light. The fraction of the plant covered with periderm was higher in plants given continuous light. In respect to periderm inhibition continuous long wavelength far red light was the most effective. The transfer of seedlings from darkness to continuous white light gave anthocyanin formation in the stem 10–20 mm below the apex. This formation took place in the cortex and was evident in plants grown in darkness or under short pulses of light. Plants grown in continuous red, blue or long wavelength Far red light showed only traces of anthocyanin.  相似文献   

12.
不同光质对桑树幼苗生长和光合特性的影响   总被引:2,自引:0,他引:2  
胡举伟  代欣  宋涛  孙广玉 《植物研究》2019,39(4):481-489
光质可影响植物光合特性、形态以及生理过程。本试验研究了不同光质(白光W、红光R、红蓝混合光RB、蓝光B)对桑树植株生长、形态和光合作用的影响。结果表明:与白光对照相比,红光、蓝光和红蓝混合光处理下植株的生长、干物质积累受到抑制;红光处理下植株的株高、叶面积显著高于白光、红蓝混合光、蓝光处理;而白光、红蓝混合光、蓝光处理下植株的LMA、叶绿素a/b比值、可溶性蛋白含量、蔗糖、淀粉含量和叶片总N含量显著高于红光处理;红蓝混合光处理下植株的Pn、Gs、ΦPSⅡ与白光处理相近,红光、蓝光处理下植株的Pn、ΦPSⅡ低于白光、红蓝混合光处理,同时红光、红蓝混合光、蓝光处理下植株的抗氧化酶活性高于白光处理,而MDA含量低于白光处理;红光处理下植株的叶片厚度、栅栏组织和海绵组织厚度显著小于白光处理。因此,一定比例的红蓝混合光可以使桑树植株的生长、光合特性、生理特征和叶片解剖结构与白光下生长植株相近,并减少单质红光、单质蓝光对植株生长发育的不利影响。  相似文献   

13.
The phytochrome mediated enhancement of peroxidase activityin maize leaves was repressed by inhibitors of cytoplasmic proteinsynthesis, whereas inhibitors of RNA and organelle protein synthesiswere ineffective. Continuous far-red light had no effect onthe DNA level in the leaves, but it increased the RNA levelafter a lag of 2 hr. Under continuous far-red light the totalcontent of polyribosomes also increased after a lag of 2 hr.Isolated polyribosomes from far-red grown plants showed an enhancedrate of the in vitro incorporation of amino acids into proteinsas compared to dark grown plants. These results indicate thatthe phytochrome regulation of peroxidase activity occurs atthe translational level. 1Present address: School of Life Sciences, University of Hyderabad,Hyderabad-500001, India (Received July 25, 1979; )  相似文献   

14.
R. E. Glick  S. W. McCauley  A. Melis 《Planta》1985,164(4):487-494
The effect of light quality during plant growth of chloroplast membrane organization and function in peas (Pisum sativum L. cv. Alaska) was investigated. In plants grown under photosystem (PS) I-enriched (far-red enriched) illumination both the PSII/PSI stoichiometry and the electrontransport capacity ratios were high, about 1.9. In plants grown under PSII-enriched (far-red depleted) illumination both the PSII/PSI stoichiometry and the electron-transport capacity ratios were significantly lower, about 1.3. In agreement, steady-state electron-transport measurements under synchronous illumination of PSII and PSI demonstrated an excess of PSII in plants grown under far-red-enriched light. Sodium dodecylsulfate polyacrylamide gel electrophoretic analysis of chlorophyll-containing complexes showed greater relative amounts of the PSII reaction center chlorophyll-protein complex in plants grown under farred-enriched light. Additional changes were observed in the ratio of light-harvesting chlorophyll a/b protein to PSII reaction center chlorophyll-protein under the two different light-quality regimes. The results demonstrate the dynamic nature of chloroplast structure and support the notion that light quality is an important factor in the regulation of chloroplast membrane organization and-function.Abbreviations and symbols Chl chlorophyll - CPa PSII reaction center chlorophyll protein complex - CPI PSI chlorophyll protein complex - FR-D light depleted in far-red sensitizing primarily PSII - FR-E light enriched in far-red sensitizing primarily PSI - LHCP PSII light-harvesting chlorophyll a/b protein complex - P 700 primary electron donor of PSI - PSI, PSII photosystems I and II, respectively - Q primary electron acceptor of PSII  相似文献   

15.
Etiolated Hordeum vulgare (barley) Plants were greened underwhite light or far-red (> 700 nm) light. Exposure to far-redlight inhibited chlorophyll synthesis (especially chlorophyllb) and the development of photosystem II which were seen whengreening took place under white light. Primary leaves were detachedand the labelling of their acyl lipids from [14C]acetate wasstudied under white light or far-red light illumination. Greeningwith far-red light caused a reduction in the radiolabellingof polyunsaturated fatty acids and diacylgalactosylglycerol.Total fatty acid labelling rates were unaffected. Phosphatidylethanolamine,which was normally poorly labelled, accounted for up to 15 percent of the total radioactivity in acyl moieties of lipids inleaves greened with far-red light. The results are discussedin connection with the role that acyl lipids may play in normalthylakoid structure and function. Hordeum vulgare, barley, acyl lipids, white light, far-red light, chloroplasts, thylakoids  相似文献   

16.
The inhibitory effectiveness of various monochromatic wavelengthsbetween 399 and 802 nm on hypocotyl elongation growth in light-grownChenopodium rubrum L. seedlings has been studied. The responsesof normal light-grown seedlings and chlorophyll-free light-grownseedlings were compared. Both types of seedling responded moststrongly to the blue and red waveband although a distinct peakof red light effectiveness was not observed in normal greenseedlings. The presence of chlorophyll also correlates witha lower inhibitory effectiveness of most wavelengths in the400–700 nm waveband. Photon fluence-rate response curves were not parallel; whereasthe plants were very sensitive to changes in fluence-rate inthe blue waveband, a much less marked fluence-rate dependencywas observed in the red and far-red wavebands. (Received September 10, 1981; Accepted April 26, 1982)  相似文献   

17.
Activities of noncyclic and alternative pathways of photosynthetic electron transport were studied in intact leaves of broad been (Vicia faba L.) seedlings grown under white light at irradiances of 176, 36, and 18 µmol quanta/(m2 s). Electron flows were followed from light-induced absorbance changes at 830 nm related to redox transformations of P700, the photoactive PSI pigment. The largest absorbance changes at 830 nm, induced by either white or far-red light, were observed in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s), which provides evidence for the highest concentration of PSI reaction centers per unit leaf area in these seedlings. When actinic white light of 1800 µmol quanta/(m2 s) was turned on, the P700 oxidation proceeded most rapidly in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s). The rates of electron transfer from PSII to PSI were measured from the kinetics of dark P700+ reduction after turning off white light. These rates were similar in leaves of all light treatments studied, and their characteristic reaction times were found to range from 9.2 to 9.5 ms. Four exponentially decaying components were resolved in the kinetics of dark P700+ reduction after leaf exposure to far-red light. A minor but the fastest component of P700+ reduction with a halftime of 30–60 ms was determined by electron transfer from PSII, while the three other slow components were related to the operation of alternative electron transport pathways. Their halftimes and relative magnitudes were almost independent on irradiance during plant cultivation. It is concluded that irradiance during plant growth affects the absolute content of PSI reaction centers in leaves but did not influence the rates of noncyclic and alternative electron transport.From Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 485–491.Original English Text Copyright © 2005 by Nikolaeva, Bukhov, Egorova.The article was translated by the authors.  相似文献   

18.
遮荫对异株荨麻光合特性和荧光参数的影响   总被引:36,自引:3,他引:36  
刘悦秋  孙向阳  王勇  刘音 《生态学报》2007,27(8):3457-3464
系统研究了全光照和不同程度的遮荫(43%,58%,73%,87%,97%)对异株荨麻光合特性和荧光参数的影响。结果表明,异株荨麻的光补偿点和光饱和点均较低,且随着遮荫程度的提高,其值以及暗呼吸速率均依次降低。净光合速率日变化曲线呈单峰型,光合速率高峰值和日平均光合速率均随着遮荫程度的提高而明显下降。蒸腾速率和气孔导度的日变化与光合速率的日变化趋势一致,遮荫对蒸腾作用和气孔导度均有显著的影响,随着遮荫程度的提高,蒸腾速率和气孔导度均显著下降。在各光照条件下,蒸腾速率与气孔导度呈显著正相关。蒸腾速率和气孔导度与光合速率的相关性随遮荫条件的不同而异,全光照条件下蒸腾速率与光合速率呈显著正相关,而所有遮荫条件下相关性不显著。气孔导度与光合速率在所有光照下相关性均不显著。各遮荫条件下叶片总叶绿素、叶绿素a、叶绿素b含量均显著高于全光照的,且随遮荫程度的提高叶绿素含量呈上升趋势,而叶绿素a/b的值则随着遮荫程度的提高而下降。叶绿素荧光参数PSⅡ内禀光能转化效率(Fv/Fm)和潜在活性(Fv/Fo)日变化呈单谷曲线。各遮荫条件下Fv/Fm和Fv/Fo值均高于全光照的,且随着遮荫程度的提高其值均依次增加。这说明,异株荨麻是一种耐荫性很强的植物,遮荫可使其降低光补偿点、光饱和点、净光合速率、暗呼吸速率以及叶绿素a/b,但增加总叶绿素、叶绿素a、叶绿素b含量、光能利用率以及PSⅡ原初光能转化效率和潜在活性,以增强在弱光条件下的生长发育能力。  相似文献   

19.
Effects of canopy shade on the lipid composition of soybean leaves   总被引:1,自引:0,他引:1  
The effect of canopy shade on leaf lipid composition was examined in soybeans ( Glycine max cv. Young) grown under field conditions. Expanding leaves were tagged at 50, 58 and 65 days after planting (DAP) in plots with either a high (10 plants m−1 row) or low (1 plant m−1 row) plant density. At 92 DAP, light conditions ranged from a pho-tosynthetic photon flux density (PPFD) of 87% of full sun with a far-red/red (735 nm/645 nm) ratio of 0.9 at upper canopy leaves to extreme shade where the PPFD was 10% of full sun with a far-red/red ratio greater than 6. Highly shaded leaves in the high plant density treatment accumulated triacylglycerol (TG) up to 25% of total leaf lipid, a 2.4-fold increase in TG on a chlorophyll basis compared to leaves in the upper canopy. Although total polar lipid content was reduced up to 50% in shaded leaves, shade had little affect on the lipid content or composition of thylakoid membranes. Shade did not affect leaf chlorophyll content. Therefore, the changes in leaf lipid composition were not related to senescence. These findings suggest that conditions of low irradiance and/or a high FR/R ratio cause a shift in carbon metabolism toward the accumulation of TG, a storage lipid. Eighteen-carbon fatty acid desaturation was also affected in highly shaded leaves where a reduction in linolenic acid (18:3) content was accompanied by a proportional increase in oleic (18:1) and linoleic (18:2) acids.  相似文献   

20.
An efficient protocol for adventitious root induction from leaf explants of Morinda citrifolia treated with different concentrations of indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA) was established in relation to physiological process changes during adventitious root induction under different light sources (fluorescent, red, blue, red + blue, and far-red). Among the different concentrations of IBA and NAA, 1.0 mg l−1 IBA was proven as the best auxin source for adventitious root induction under fluorescent light. Higher concentrations of IBA and NAA trigger callus formation in both light and dark conditions. Maximum numbers of adventitious roots were induced under red light (26) followed by blue light (22) and the lowest under far-red light (6). In contrast, numerous callus formations were induced by red + blue followed by red and blue, while the highest root length (1.66 cm) with negligible callusing was observed under fluorescent light. Catalase and guaicacol peroxidase activities were highest under red light followed by fluorescent light and the lowest under red + blue light, but superoxide dismutase activity was not significantly influenced by different light sources. Ascorbate peroxidase played an important role in detoxification of the harmful effects of hydrogen peroxide (H2O2). Under fluorescent light, significantly lower accumulation of H2O2 was observed. Accumulation of H2O2 in the induced root under different light showed a positive correlation with peroxidation of lipids and was observed higher under far-red followed by red + blue and blue light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号