首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To find out how the polychaete Marenzelleria cf. viridis could spread successfully into the habitat of the Darss-Zingst Bodden Chain, one important environmental factor for sediment dwelling animals was examined: hydrogen sulphide. To investigate the stress of this environmental factor, hydrogen sulphide was continuously examined in the pore water of the sediment and burrows of M. cf. viridis. Metabolic activity was recorded by direct and indirect calorimetry. Depending on water temperature, organic matter content of the sediment and salinity, the sulphide concentration in the pore water varied between 1.5 and 4.2 mmol l-1 being high during summer and in winter when the sediment and overlying water was ice covered. In microcosm experiments water of M. cf. viridis-burrows showed variations in sulphide between 145 and 210 µmol l-1 but pore water concentration was much higher (6.5 mmol l-1). In the presence of oxygen animals exhibited an accelerated metabolic rate which was met by a fully aerobic metabolism at Po2 of 20 to 7.5 kPa and sulphide concentration of 215–245 µmol l-1. When oxygen is absent the heat production was only slightly elevated (103%) when compared to the anoxic control. The elevated heat production of the animals during sulphide exposure and oxygen may be due to detoxification processes. In this case thiosulphate is formed probably via mitochondrial oxidation and therefore may account for additional ATP-gain.  相似文献   

2.
华尔  李佳  董洁  徐风风  张志南 《生态学报》2012,32(13):3975-3986
以青岛砂质潮间带自由生活海洋线虫为研究对象,建立微型受控生态系,研究缺氧对海洋线虫群落结构和垂直分布的影响,以及环境复氧后海洋线虫群落的恢复能力。研究结果显示,海洋线虫是耐低氧的小型底栖动物类群,可通过垂直迁移来耐受缺氧造成的不利条件。但是,海洋线虫通过主动迁出而耐受缺氧条件的特性具有种的区别。研究中Pseudosteineria sp1、Rhynchonema sp1等海洋线虫通过向有氧环境的主动迁移耐受缺氧条件;Thalassironus sp1却可通过自身耐受机制抵御缺氧条件,在缺氧生境中仍能保持较高的丰度。此外,研究结果显示,当表层海洋线虫暴露于缺氧环境时,其总丰度显著降低,种类组成发生改变。Pseudosteineria sp1对缺氧环境较为敏感,可暂时性地离开沉积物进入水层;而沉积物溶解氧恢复正常后,该种可以重新回到沉积物中。Daptonema sp1成熟个体及其幼龄个体对缺氧均具有较高的耐受性,是缺氧群落的绝对优势种。D.sp3则表现出对缺氧环境较高的敏感性。环境恢复正常,线虫群落丰度及多样性增加,Neochromadora sp1和Spilophorella sp1等具有机会种的特点,首先表现出丰度和繁殖能力的增加。但是线虫群落种类组成在受测时间内并未能完全恢复,群落结构的恢复需要更长的时间。  相似文献   

3.
Analysis of phosphate and nitrate data recorded in the winter surface layer of the Baltic Sea from 1958 to 1989 indicate positive overall trends, although the rate of accumulation has decreased since 1978. The long term accumulation of these algal nutrients in the oxic deep water below the halocline has also decreased since 1977. Under anoxic conditions, however, the trend shown by the phosphate concentration is distinctly positive in recent times owing to phosphate remobilization from the sediment. The salinity has decreased in the surface water and even more rapidly below the halocline in the central Baltic basins during the period marked by the absence of major salt water inflows since 1977. The oxygen conditions have also deteriorated in the near-bottom water layer during this time as shown by the considerable rise in the hydrogen sulphide concentrations. These changes, including the recent phosphate accumulation under anoxic conditions, can thus be considered natural rather than anthropogenic. The impact of long-term variations in nutrients and hydrographic parameters is discussed with respect to the development of Baltic fish stocks.  相似文献   

4.
The vertical and temporal changes in microbial communities were investigated throughout the water column and sediment of the saline meromictic Lake Kaiike by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Marked depth-related changes in microbial communities were observed at the chemocline and the sediment-water interface. However, no major temporal changes in the microbial community below the chemocline were observed during the sampling period, suggesting that the ecosystem in the anoxic zone of Lake Kaiike was nearly stable. Although the sequence of the most conspicuous DGGE band throughout the anoxic water and in the top of the microbial mat was most similar to that of an anoxic, photosynthetic, green sulphur bacterium, Pelodyction luteolum DSM273 (97% similarity), it represented a new phylotype. A comparison of DGGE banding patterns of the water column and sediment samples demonstrated that specific bacteria accumulated on the bottom from the anoxic water layers, and that indigenous microbial populations were present in the sediment. The measurements of bicarbonate assimilation rates showed significant phototrophic assimilation in the chemocline and lithoautotrophic assimilation throughout the anoxic water, but were not clearly linked with net sulphide turnover rates, indicating that sulphur and carbon metabolisms were not directly correlated.  相似文献   

5.
This study examined the potential for inter-specific differencesin root aeration to determine wetland plant distribution innature. We compared aeration in species that differ in the typeof sediment and depth of water they colonize. Differences inroot anatomy, structure and physiology were applied to aerationmodels that predicted the maximum possible aerobic lengths anddevelopment of anoxic zones in primary adventitious roots. Differencesin anatomy and metabolism that provided higher axial fluxesof oxygen allowed deeper root growth in species that favourmore reducing sediments and deeper water. Modelling identifiedfactors that affected growth in anoxic soils through their effectson aeration. These included lateral root formation, which occurredat the expense of extension of the primary root because of theadditional respiratory demand they imposed, reducing oxygenfluxes to the tip and stele, and the development of stelar anoxia.However, changes in sediment oxygen demand had little detectableeffect on aeration in the primary roots due to their low wallpermeability and high surface impedance, but appeared to reduceinternal oxygen availability by accelerating loss from laterals.The development of pressurized convective gas flow in shootsand rhizomes was also found to be important in assisting rootaeration, as it maintained higher basal oxygen concentrationsat the rhizome–root junctions in species growing intodeep water. Copyright 2000 Annals of Botany Company Aeration, diffusion, ecophysiology, flooding, model, oxygen, respiration, root, wetland  相似文献   

6.
Mechanisms of dimethyl sulphide (DMS) and methanethiol (MT) production and consumption were determined in moderately hypersaline mats, Guerrero Negro, Mexico. Biological pathways regulated the net flux of DMS and MT as revealed by increases in flux resulting from decreased salinity, increased temperature and the removal of oxygen. Dimethylsulphoniopropionate (DMSP) was not present in these microbial mats and DMS and MT are probably formed by the reaction of photosynthetically produced low-molecular weight organic carbon and biogenic hydrogen sulphide derived from sulphate reduction. These observations provide an alternative to the notion that DMSP or S-containing amino acids are the dominant precursors of DMS in intertidal sediment systems. The major sink for DMS in the microbial mats was biological consumption, whereas photochemical oxidation to dimethylsulphoxide was the major sink for DMS in the overlying water column. Diel flux measurements demonstrated that significantly more DMS is released from the system during the night than during the day. The major consumers of DMS in the presence of oxygen were monooxygenase-utilizing bacteria, whereas under anoxic conditions, DMS was predominantly consumed by sulphate-reducing bacteria and methanethiol was consumed by methanogenic bacteria. Aerobic and anaerobic consumption rates of DMS were nearly identical. Mass balance estimates suggest that the consumption in the water column is likely to be smaller than net the flux from the mats. Volatile organic sulphur compounds are thus indicators of high rates of carbon fixation and sulphate reduction in these laminated sediment ecosystems, and atmospheric sulphur can be generated as a biogenic signature of the microbial mat community.  相似文献   

7.
The Blue Lias Formation at Lyme Regis (Dorset, UK) includes an exceptional pavement of abundant large ammonites that accumulated during a period of profound sedimentary condensation. Ammonites were originally composed of aragonite, an unstable polymorph of calcium carbonate, and such fossils are typically prone to dissolution; the occurrence of a rich association of aragonitic shells in a condensed bed is highly unusual. Aragonite dissolution occurs when pore‐water pH is reduced by the oxidization of hydrogen sulphide close to the sediment‐water interface. Evidence suggests that, in this case, the oxygen concentrations in the overlying water column were low during deposition. This inhibited the oxidation of sulphides and the associated lowering of pH, allowing aragonite to survive long enough for the shell to be neomorphosed to calcite. The loss of aragonite impacts upon estimates of past biodiversity and carbonate accumulation rates. The preservational model presented here implies that diagenetic loss of aragonite will be greatest in those areas where dysoxic‐anoxic sediment lies beneath an oxic waterbody but least where the sediment and overlying water are oxygen depleted. Unfortunately, this implies that preservational bias through aragonite loss will be greatest in those biotopes which are typically most diverse and least where biodiversity is lowest due to oxygen restriction.  相似文献   

8.
Kristensen  Erik 《Hydrobiologia》2000,421(1):1-24
The present paper reviews the current knowledge on diagenetic carbon transformations at the oxic/anoxic interface in coastal marine sediments. Oxygen microelectrodes have revealed that most coastal sediments are covered only by a thin oxic surface layer. The penetration depth of oxygen into sediments is controlled by the balance between downward transport and consumption processes. Consumption of oxygen is directly or indirectly caused by respiration of benthic organisms. Aerobic organisms have the enzymatic capacity for complete oxidation of organic carbon. Anaerobic decay occurs stepwise, involving several types of bacteria. Large organic molecules are first fermented into small moieties. These are then oxidized completely by anaerobic respirers using a sequence of electron acceptors: Mn4+, NO3 -, Fe3+, SO4 2- and CO2. The quantitative role of each electron acceptor depends on the sediment type and water depth. Since most of the sediment oxygen uptake is due to reoxidation of reduced metabolites, aerobic respiration is of limited importance. It has been suggested that sediments contain three major organic fractions: (1) fresh material that is oxidized regardless of oxygen conditions; (2) oxygen sensitive material that is only degraded in the presence of oxygen; and (3) totally refractory organic matter. Processes occurring at the oxic/anoxic boundaries are controlled by a number of factors. The most important are: (1) temperature, (2) organic supply, (3) light, (4) water currents, and (5) bioturbation. The role of bioturbation is important because the infauna creates a three-dimensional mosaic of oxic/anoxic interfaces in sediments. The volume of oxic burrow walls may be several times the volume of oxic surface sediment. The infauna increases the capacity, but not the overall organic matter decay in sediments, thus decreasing the pool of reactive organic matter. The increase in decay capacity is partly caused by injection of oxygen into the sediment, and thereby enhancing the decay of old, oxygen sensitive organic matter several fold. Finally, some future research directions to improve our understanding of diagenetic processes at the oxic/anoxic interface are suggested.  相似文献   

9.
Laboratory experiments on the infaunal activity of intertidal nematodes   总被引:1,自引:0,他引:1  
The impact of oxygen on the vertical distribution of an intertidal nematode community was investigated in a manipulation experiment with sediments collected from the Oosterschelde (The Netherlands). The vertical distribution of nematodes was examined in response to sediment inversion in perspex cores with or without the presence of an air-flushed silicone tube introducing oxygen to the bottom sediment layer. Following an incubation of 1 week, peak densities of nematodes were recorded in the deep layers of the sediment in cores with subsurface oxygenation. In contrast, this concentration of nematodes was absent in the cores that lacked bottom oxygenation and the majority of the total assemblage was still located in anoxic sediment layers. This suggests that oxidised sediments with traces of oxygen represent favourable conditions for nematodes and indicates that these nematodes are tolerant to short-term anoxia and burial. Observations on the species level suggest that oxygenation, primarily through its direct impact on geochemical properties of the sediment, may be an important factor governing the subsurface activity of nematodes.  相似文献   

10.
The distribution of nitrate and nitrite in the interstitial water of the sediment of eelgrass (Zostera marina) bed of Izembek Lagoon, Alaska, were investigated. Their concentrations were relatively high (0 to 9.8 μg-at.N·1?1, average 4.8 for nitrate; 0 to 4.0 μ-at.N·1?1, average 1.9 for nitrite) although the sediments were anoxic and contained hydrogen sulphide. The rates of bacterial denitrification measured by 15N tracer technique ranged from 0.49×10?10 to 1.2 × 10?9 g-atN·g?1·h?1. When a steady state is maintained, the loss of nitrate and nitrite must be balanced by their production by bacterial nitrification. Experimentally determined rate of nitrification in the sediment was of the same order. A model experiment demonstrated that oxygen is transported from leaves to rhizomes and roots of eelgrass and released into the sediment. The oxygen is used for nitrification in the rhizosphere in anoxic sediments.  相似文献   

11.
Depth profiles of oxygen concentration and the redox status of acid-extractable iron were measured in littoral sediment cores of Lake Constance after mechanical removal of surface sediment, mixing, and re-deposition. In undisturbed sediment cores, oxygen penetrated down to 2.9±0.4 mm or 4.6±0.4 mm depth, respectively, after 12 h of incubation in the dark or light; causing a net diffusive flux of 108±20 nmol cm−2 h−1 oxygen into or 152±35 nmol cm−2 h−1 out of the sediment. The uppermost 20 mm layer of the undisturbed sediment cores contained 10.2± 0.7 μmol cm−3 ferrous and 3.8±1.1 μmol cm−3 ferric iron. After erosion, the oxic–anoxic interface in the newly exposed sediment was shifted to about 2 mm depth within 30 min, causing an oxygen flow into the sediment. During the following 12 h, oxygen penetrated deeper into the sediment, and in the light oxygen was produced photosynthetically. Ferrous iron was largely oxidized within two days after erosion. The oxidation rates were higher in oxic than in anoxic sediment layers, and decreased with time. This oxidation process took the longer and was confined closer to the surface the more reduced the exposed sediment had been before. Resuspension of eroded sediment in aerated lake water did not cause a significant oxidation or reduction of iron. After re-deposition, the oxic–anoxic interface in the re-sedimented material shifted to about 2 mm depth within 30 min, causing an oxygen flow into the sediment. During the following 12 h, the oxygen penetration depth and the oxygen flow rate into the re-deposited sediment did not change any further, and no oxygen was produced in the light. Ferric iron was reduced during the first day after re-deposition, and partly re-oxidized during the second day. The extent of reduction was stronger and the extent of oxidation weaker the more reduced the resuspended sediment was before. Oxic conditions in the sediment surface were established faster and ferrous iron was oxidized to a larger extent after erosion of sediment than after resuspension and sedimentation.  相似文献   

12.
Internal waves (seiches) are well-studied physical processes in stratified lakes, but their effects on sediment porewater chemistry and microbiology are still largely unexplored. Due to pycnocline oscillations, sediments are exposed to recurrent changes between epilimnetic and hypolimnetic water. This results in strong differences of environmental conditions, which should be reflected in the responses of redox-sensitive biogeochemical processes at both, the sediment–water interface and deeper sediment layers. We tested in a series of mesocosm experiments the influence of seiche-induced redox changes on porewater chemistry and bacterial activity in the sediments under well controlled conditions. Thereby, we excluded effects of changes in current and temperature regimes. For a period of 10 days, intact sediment cores from oligotrophic Lake Stechlin were incubated under constant (either oxic or anoxic) or alternating redox conditions. Solute concentrations were measured as porewater profiles in the sediment, while microbial activity was determined in the upper 0.5 cm of sediment. Oxic and alternating redox conditions resulted in similar ammonium, phosphate, and methane porewater concentrations, while concentrations of each analyte were considerably higher in anoxic cores. Microbial activity was clearly lower in the anoxic cores than in the oxic and the alternating cores. In conclusion, cores with intermittent anoxic phases of up to 24 hours do not differ in biogeochemistry and microbial activities from static oxic sediments. However, due to various physical processes seiches cause oxygen to penetrate deeper into sediment layers, which affects sediment redox gradients and increase microbial activity in seiche-influenced sediments.  相似文献   

13.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

14.
SUMMARY.
  • 1 In this paper we extend a vertical mixing model of Lake Erie with an oxygen budget model. The model was tested against data gathered in the summers of 1979 and 1980 with good results, showing that it is capable of simulating vertical distributions of temperature and dissolved oxygen over relatively short time periods.
  • 2 The results underline the importance of turbulent mixing in distributing oxygen throughout the water column in the Central Basin of the lake. In addition, the results indicate that production and respiration processes dominate the budget under the influence of low wind speeds, while surface fluxes dominate during periods of high wind.
  • 3 Bottom mixing delays the onset of anoxic conditions at the sediment/water interface by distributing the sediment demand over the 5–6 m depth of the bottom mixed layer.
  相似文献   

15.
Viable counts of aerobic and anaerobic chemotrophic sulphur-oxidizers as well as phototrophic sulphur bacteria were determined in sediment samples taken from two different areas along the Baltic Sea shore which were known to regularly develop sulphidic conditions. Depth profiles of bacterial cell counts were correlated with concentration profiles of chloride, sulphate, sulphide, nitrate and phosphate in the pore water of these sediments and with potential activities of nitrate reduction, thiosulphate transformation and sulphate formation. The data revealed a complex multilayered structure within the sediments. Sulphide was released into the water from sediments of both sampling areas, but it was found that light and the availability of oxygen significantly reduced this amount. In the highly reduced sediment at Hiddensee, the highest numbers of phototrophic and chemotrophic sulphur-oxidizers were found near the sediment surface. Therefore, it was concluded that the combined action of both groups of bacteria most efficiently oxidizes reduced sulphur compounds in the top layers of the sediments. Nitrate may replace oxygen as final electron acceptor and will support oxidation of sulphide, in particular when oxygen and light are limiting.  相似文献   

16.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   

17.
Straw pulp production accounts for 74% of the total raw pulp production in China. The pulping waste, containing high contents of silicate and high pH, is difficult to treat. Instead of the conventional alkaline process, ammonia sulfite pulping discharges neutral effluent with nitrogen, phosphorus, potassium, sulfur and organic matter which are potential fertilizers and water resources for agriculture. The effect of effluent from ammonia sulfite pulping on rice growth and yield, was studied in Baigezhuang farm, Hebei province. Diluted rice straw digester waste or composite waste were irrigated on a paddy field. In plot tests, rice output increased by 16.2–25.3% with 0.7–6% pulp digester waste and by 22.9–37.9% with 2.7–5.4% composite waste. In field tests, rice output increased by 8.6–15.9% with 2.7–4.1% composite waste. Due to clean water dilution and paddy purification, the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid (SS), sulfide and phenol can reach over 97%. Rice quality also tested had higher protein content than the control. The study suggests that the effluents from ammonia sulfite pulping can be widely used in the farming industry. The ammonia sulfite process is a good approach to overcome pulp pollution in rural areas.  相似文献   

18.
Anaerobic oxidation of methane (AOM) and sulphate reduction were examined in sediment samples from a marine gas hydrate area (Hydrate Ridge, NE Pacific). The sediment contained high numbers of microbial consortia consisting of organisms that affiliate with methanogenic archaea and with sulphate-reducing bacteria. Sediment samples incubated under strictly anoxic conditions in defined mineral medium (salinity as in seawater) produced sulphide from sulphate if methane was added as the sole organic substrate. No sulphide production occurred in control experiments without methane. Methane-dependent sulphide production was fastest between 4 degree C and 16 degree C, the average rate with 0.1 MPa (approximately 1 atm) methane being 2.5 micro mol sulphide day(-1) and (g dry mass sediment)(-1). An increase of the methane pressure to 1.1 MPa (approximately 11 atm) resulted in a four to fivefold increase of the sulphide production rate. Quantitative measurements using a special anoxic incubation device without gas phase revealed continuous consumption of dissolved methane (from initially 3.2 to 0.7 mM) with simultaneous production of sulphide at a molar ratio of nearly 1:1. To test the response of the indigenous community to possible intermediates of AOM, molecular hydrogen, formate, acetate or methanol were added in the absence of methane; however, sulphide production from sulphate with any of these compounds was much slower than with methane. In the presence of methane, such additions neither stimulated nor inhibited sulphate reduction. Hence, the experiments did not provide evidence for one of these compounds acting as a free extracellular intermediate (intercellular shuttle) during AOM by the presently investigated consortia.  相似文献   

19.
In this study, we investigated the relationship between environmental parameters (water and sediment) and benthic foraminiferal assemblages found in nearshore siliciclastic sediment in the Arabian Gulf. Nearshore marine water and sediment samples were collected from a beach on the Gulf of Bahrain located south of Al Khobar, Saudi Arabia. The water samples were analyzed for biochemical oxygen demand (BOD5) and other chemical analyses. The sediment samples were tested for sediment oxygen demand (SOD) and heavy metal analysis. Results showed the BOD5 levels were below the detection limit (<1 ppm), while the mean SOD value was 0.97 ± 0.08 g/m2·day. The water and sediments were unpolluted and free of eutrophic enrichment, while the sediment was anoxic. The two most common genera in the benthic foraminiferal assemblage, Ammonia and Elphidium, are typical of shallow water sandy substrates. This is the first reported comparison between SOD and benthic foraminiferal assemblages.  相似文献   

20.
The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water‐column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR/FeT), trace metal behaviour (V/Al), and changes in nitrogen cycling (δ15N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2–0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea‐level change, and where this early Cambrian biota was established in conditions with very low oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号