首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In order to study the existence of possible interrelation-ships between prolactin (PRL) and growth hormone (GH) secretions, adult male rats bearing an anterior pituitary graft under the kidney capsule since day 90 of life and their sham-operated controls were submitted to a single i.p. administration of L-dopa (50 mg/kg weight) or saline 30 days after the operation. Plasma PRL and GH levels were measured by using specific RIA methods. Dopamine (DA) and norepinephrine (NE) contents in the hypothalamus and in the in situ anterior pituitary gland were measured by using a specific radioenzymatic assay. An increase in plasma PRL levels and a decrease in plasma GH levels were shown in grafted rats. Hypothalamic contents of DA and NE were increased in these animals, while the anterior pituitary content of DA was not modified as compared to controls. The administration of a single injection of L-dopa led to decreases of plasma PRL and GH levels in both grafted and control rats, but while marked increases in hypothalamic and anterior pituitary contents of DA were shown in both groups, the hypothalamic content of NE was only increased in control animals. These data suggest that PRL and GH secretions were closely related. Dopamine could be mediating the action of PRL on GH, while NE would be less involved.  相似文献   

2.
The purpose of this study was to determine whether inhibition of tuberoinfundibular dopaminergic (TIDA) neuron function which occurs during chronic estrogen administration persists after removal of the estrogen. Ovariectomized (OVX) Fischer 344 (F344) rats were implanted for 4 weeks with a Silastic capsule containing estradiol-17 beta (E2) and controls with an empty capsule for 4 weeks. Other rats which received E2 for 4 weeks had the capsule removed and experiments performed 4 weeks later. At the end of 4 weeks of E2 treatment, anterior pituitary (AP) weight was increased sixfold, serum prolactin (PRL) 65-fold, and AP DNA content fivefold over OVX control rats. Four weeks after removal of E2, AP weight, serum PRL, and AP DNA content declined, but remained significantly above OVX control values. At the end of 4 weeks of E2 treatment and after E2 withdrawal, release of [3H]dopamine (DA) from median eminence (ME) tissue superfused in vitro was lower than from ME of OVX control rats although [3H]DA accumulation was not significantly different among the treatment groups. Administration of apomorphine (APO), a dopamine agonist, significantly reduced plasma prolactin levels in OVX control rats, in rats at the end of 4 weeks E2 treatment, and in rats after 4 weeks of E2 withdrawal. Injection of haloperidol (HALO) produced similar increases in plasma PRL/estimated PRL-cell DNA in OVX controls, at the end of E2 treatment or after E2 withdrawal. However, injection of morphine (MOR), a drug which increases the release of PRL by inhibiting hypothalamic dopaminergic activity, resulted in a rise in plasma PRL/estimated PRL-cell DNA in OVX control rats that was significantly greater compared to rats at the end of E2 treatment or after E2 withdrawal. Since rats treated with E2 released less [3H]DA from ME tissue in vitro, and were less responsive to MOR, it can be that animals treated for 4 weeks with E2 show a decreased ability to release DA from TIDA neurons which persists even after termination of E2 treatment. These results suggest that chronic high circulating E2 levels result in a depression of TIDA neuronal activity which is sustained after E2 is removed.  相似文献   

3.
Prolactin (PRL) release was studied in mid-lactational female rats by comparing the stimulatory influence of suckling to a drug protocol that mimics the effect of suckling on the anterior pituitary (AP). Animals that nursed pups for 15 minutes and were allowed to suckle again 60 minutes later for 10 minutes, released PRL effectively during both nursing episodes; however, in animals that received the dopamine (DA) agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) at the end of the first nursing period did not show an increase in plasma PRL to a second suckling stimulation by the pups. When thyrotropin releasing hormone (TRH) was substituted for the second suckling period in CB-154 treated rats, a slight increase in plasma PRL occurred 5 minutes after the injection. In a third study we transiently blocked the action of DA at the AP by injecting the DA antagonist domperidone (0.01 mg/rat i.v.), followed 5 minutes later by the administration of CB-154. One hour later animals were either allowed to suckle pups for 10 minutes or were injected with TRH. Treatment with TRH resulted in an 11 fold increase in plasma PRL but suckling was completely ineffective in inducing PRL release. These data suggest that the lack of PRL release to suckling in CB-154 treated rats was due to inhibitory effects of CB-154 on neural mechanisms which link nursing to PRL release. In addition, the data show that pharmacologic DA antagonism affects TRH releasable PRL more than does suckling. This may be due to a reduction, by suckling, of the pool of PRL that is available to be released by TRH administration.  相似文献   

4.
Prolactin (PRL) release was studied in female rats during midlactation using pharmacologic manipulations designed to mimic the hypothalamic effects of suckling. In the first experiment pituitary dopamine (DA) receptors were blocked by sulpiride (10 micrograms/rat i.v.). One hour later, thyrotropin-releasing hormone (TRH, 1.0 micrograms/rat i.v.) was given to induce PRL release. TRH released significantly more PRL following DA antagonism than when no DA antagonism was produced, suggesting that DA receptor blockade increased the sensitivity of the AP to TRH. In a second experiment, VIP (25 micrograms/rat) increased plasma prolactin 3-4 fold but this effect was not enhanced significantly by prior dopamine antagonism with sulpiride. We conclude that dopamine antagonism enhances the PRL releasing effect of TRH but not VIP in lactating rats.  相似文献   

5.
This study was undertaken to examine the consequences of prolonged removal of the pituitary from hypothalamic control and of estrogen-induced pituitary tumors on the susceptibility of GH and TSH release to regulatory influences of dopamine (DA). Adult male Fischer 344 rats were treated with transplants of female anterior pituitaries under the renal capsule or with Silastic capsules containing diethylstilbestrol (DES). Capsules with DES remained in place until the animals were killed (DES-IN) or were removed 7 weeks prior to sacrificing the rats (DES-OUT). Both pituitary grafts and DES caused the expected elevation in plasma prolactin and suppression of plasma GH and TSH levels. Basal GH release in vitro was not affected by exposure to DES in vivo but was reduced by transplantation of the pituitary to an ectopic site. Treatment with DA in vitro suppressed GH release from the in situ pituitaries of control, DES treated and grafted rats but increased GH release from the ectopic pituitaries. Basal release of TSH in vitro was reduced in the pituitaries of DES-IN and DES-OUT animals but was not affected by the presence of pituitary transplants. No detectable TSH was released from the ectopic pituitaries in the absence of DA. DA decreased TSH release from the pituitaries of control, DES-OUT and DES-IN rats but not from the in situ pituitaries of grafted rats. In contrast, DA produced an increase in TSH release from ectopic pituitaries. These results demonstrate that somatotrophs and thyrotrophs removed from the hypothalamic influences on subjected to direct and indirect effects of DES exhibit abnormal responses to DA. We suspect that prolonged absence of normal pituitary control leads to the development of regulatory mechanism of pituitary hormone release which are different from those operating under physiological conditions.  相似文献   

6.
The time course effects of pargyline on hypothalamic biogenic amines and serum prolactin (PRL), LH and TSH were studied in adult male rats. The rats were killed at intervals of 1–6 hrs after pargyline injection. Hypothalamic dopamine (DA) rose 79% by 1 hr and was 41% above “0” time by 6 hrs. Norepinephrine (NE) increased 31% by 1 hr and remained at about this level through 6 hrs, whereas serotonin (5HT) increased from 42% by 1 hr and to 95% by 6 hrs. Serum PRL LH and TSH fell significantly during the first 2 hrs, but all had returned to pretreatment values by 4 hrs. Serum PRL was about 4-fold above pretreatment values by 6 hrs, but LH and TSH remained at pretreatment levels. Stimulation by pargyline of PRL release was potentiated by Lilly compound 110140, a serotonin reuptake inhibitor, and blocked by parachlorophenylalanine, a serotonin synthesis inhibitor. These results suggest that the inhibitory effects of pargyline on PRL, LH, and TSH release during the first 2 hrs were associated mainly with a rapid increase in DA, and subsequent elevation of PRL release was related to the increase in 5HT. Return of serum LH and TSH to pretreatment levels at 4 and 6 hrs appeared to be associated mainly with the decrease in DA and perhaps to elevated NE levels. These results suggest that changes in relative concentrations of hypothalamic amines are related to differential release of PRL, LH and TSH.  相似文献   

7.
Prolonged exposure to estradiol 17-beta (E2) in rats has been shown to decrease dopamine (DA) synthesis in and release from tuberoinfundibular dopaminergic (TIDA) neurons in Fischer 344 rats. The objective of the present study was to determine whether inhibition of the E2-induced increase in anterior pituitary (AP) weight and prolactin (PRL) secretion by concomitant administration of the dopaminergic agonist, bromocryptine, could prevent the decrease in TIDA neuronal function produced by chronic E2 administration. TIDA neuronal function was evaluated by in vitro superfusion and electrical stimulation of median eminence (ME) tissue after allowing for accumulation of [3H]dopamine (DA). The effect of chronic E2 and/or bromocryptine treatment on catecholamine content in tuberohypophyseal neurons in the neurointermediate lobe was also measured to determine whether increased pituitary size possibly damaged the tuberohypophyseal neurons. Treatment with E2 for 30 days significantly increased AP weight, serum PRL concentration, and AP PRL and DNA content over values in non-E2-treated controls. When bromocryptine was injected daily during E2 treatment, bromocryptine completely inhibited the E2-induced increase in serum PRL and AP DNA content, and AP weight was only moderately increased. The evoked release of 3H at the end of the 30-day E2 treatment was reduced during electrical stimulation and there was no augmented release of 3H from the ME tissue after 10 microM nomifensine infusion in E2-treated rats and in rats given both bromocryptine and E2. However, neurointermediate lobe DA content was diminished only in E2-treated rats and not in animals given bromocryptine together with E2. When all treatments were discontinued for 30 days, animals previously given only E2 showed sustained increases in AP weight, serum PRL levels, and AP PRL and DNA content, but reduced stimulation-evoked release of 3H, absence of response to nomifensine, and reduced neurointermediate lobe DA and norepinephrine content when compared with values in non-E2-treated controls. After withdrawal of E2 treatment for 30 days, animals previously given bromocryptine and E2 together were not different from control animals in any of the parameters measured. These results suggest that the decline in TIDA neuronal release of DA induced by chronic E2 treatment was at least partly exerted via the marked hyperprolactinemia and/or by compression of the medial basal hypothalamus by the enlarged AP.  相似文献   

8.
The purpose of the present study was to evaluate the effects of alpha-2u-globulin, a sex-dependent male rat urinary protein on pituitary-gonadal functions and hypothalamic monoamine contents in male mice. Adult male mice, maintained under standardized laboratory conditions (L:D, 14:10) were injected subcutaneously with alpha-2u-globulin at a dose of 1 mg/animal/day or with vehicle daily for 14 days and killed 16 h after the last injection. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and testicular levels of T were measured by radioimmunoassays. The concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in medial basal hypothalamus (MBH) and anterior hypothalamus (AH) were measured by high performance liquid chromatography. Administration of alpha-2u-globulin led to a significant increase in plasma FSH and LH levels (P less than 0.05) as well as in plasma and testicular T levels (P less than 0.025). In the MBH of alpha-2u-globulin treated mice, there were significant elevations of NE (P less than 0.025), DA (P less than 0.01) and 5-HT (P less than 0.025) contents. In the AH, both DA (P less than 0.025) and 5-HT (P less than 0.01) contents were decreased while NE content remained unaltered. These results indicate that administration of alpha-2u-globulin can lead to a significant stimulation of pituitary-testicular axis and that this effect may be mediated through alteration of hypothalamic monoamines.  相似文献   

9.
The present study was undertaken to test the hypothesis that the deficits in copulatory behavior observed in hyperprolactinemic male rats may be related to a reduction in hypothalamic release of luteinizing hormone releasing hormone (LHRH). Adult male Fischer 344 rats were made hyperprolactinemic by ectopic pituitary grafts or were sham operated and 30 min prior to being tested for copulatory performance received a single subcutaneous injection of 500 ng LHRH, 100 ng LHRH, or saline. On different occasions, testosterone (T) levels were measured in plasma collected 30 min following identical treatments. Plasma prolactin (PRL) levels were determined in samples collected 30 min after injection of 500 ng LHRH. Pituitary grafting produced the expected, significant increase in plasma PRL levels and significant deficits in copulatory behavior. Treatment of hyperprolactinemic subjects with 500 ng LHRH significantly reduced both the time to first intromission and the time to ejaculation to times comparable with those of sham-operated subjects. The 100-ng dose produced a significant reduction in mount frequency. Plasma T levels were significantly elevated following either dose of LHRH. These results demonstrate that exogenous LHRH can restore normal copulatory performance in hyperprolactinemic male rats and support the hypothesis that a reduction in hypothalamic LHRH release is responsible for the behavioral deficits observed in those animals.  相似文献   

10.
The role of hypothalamic catecholamines and luteinizing hormone releasing hormone (LHRH) in the negative feedback effect of estradiol benzoate (EB) on luteinizing hormone (LH) release was studied in chronic ovariectomized rats. Administration of 10 micrograms EB decreased plasma LH levels and increased LHRH content in the medial basal hypothalamus (MBH) 1 day after injection. Inhibition of dopamine and norepinephrine synthesis with alpha-methyl-p-tyrosine (alpha-MT) reduced the LHRH content in the MBH in both oil- and EB-treated animals and partially reversed the decrease in plasma LH levels. Inhibition of norepinephrine synthesis with fusaric acid decreased LHRH content in both oil- and EB-treated rats but had no effect on plasma LH levels. The results suggest that at least a portion of the inhibitory effect of EB on LH release is due to the stimulation of an inhibitory dopaminergic mechanism which reduces LHRH release from the MBH. This feedback mechanism is apparently not susceptible to dopaminergic receptor blockade since administration of pimozide had no effect on LH levels. The stimulatory feedback effect of EB on prolactin release was studied in the same animals. alpha-MT and EB produced additive effects on plasma prolactin levels whereas fusaric acid blocked the EB-induced increase in plasma prolactin levels. Pimozide appeared to potentiate the effect of EB on prolactin release. The results reconfirm the possible role of noradrenergic neurons in the release of prolactin induced by EB and also suggest that EB stimulates a dopaminergic mechanism which is inhibitory to prolactin release but is normally masked by increased noradrenergic activity.  相似文献   

11.
Prolactin-releasing action of LRF: a central catecholamine mediated event?   总被引:1,自引:0,他引:1  
Y W Zhang  S S Yen 《Life sciences》1984,34(7):653-657
Decline of plasma dopamine (DA), norepinephrine (NE), and epinephrine (EP) levels after iv administration of a 100 microgram bolus of LRF has been reported in normal men. This finding has been used to support the concept of a central dopamine mediated mechanism for LRF-induced PRL release. In the present study (including 5 postmenopausal women and 4 normal men), no detectable changes were found in plasma levels of DA, NE, EP and the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) following LRF (100 microgram iv) administration. These results pertain to both groups of subjects, although the PRL increment was 2-fold greater in the postmenopausal women than in the normal men. It is concluded that peripheral administration of LRF causes no acute decline of plasma catecholamines, and that the LRF-induced release of PRL may be based on the recent demonstration in vitro of a paracrine effect, gonadotrope to lactotrope.  相似文献   

12.
Interaction between opiates and hypothalamic dopamine on prolactin release.   总被引:1,自引:0,他引:1  
Opiate stimulation of prolactin (PRL) release appears to involve a hypothalamic mechanism(s). The present study utilized both central acting drugs and direct measurement of hypothalamic dopamine (DA) to investigate this problem. Administration of L-dopa, the precursor of DA; piribedil, a DA agonist; or amineptine, a DA reuptake inhibitor, each decreased serum PRL concentrations. Morphine sulfate (MS) and haloperidol (HAL) significantly increased serum PRL levels. L-dopa and piribedil reversed the stimulatory effect of MS on serum PRL concentrations by increasing dopamine activity. MS blocked the inhibitory effects of amineptine on serum PRL release, possibly by decreasing the concentration of DA available for reuptake. Injection of subeffective doses of HAL concurrently with a subeffective dose of MS increased serum PRL concentrations, by an additive inhibitory action on dopaminergic activity. β-endorphin, an endogenous opioid peptide, decreased the rate of DA turnover in the median eminence, and increased serum PRL levels approximately 10 - fold. These observations indicate that opiates stimulate PRL release by decreasing DA activity in the median eminence.  相似文献   

13.
Effects of neonatal androgenization (NA) and estrogenization (NE) were compared especially in terms of the prolactin (PRL) secretion in female rats. Twenty-four h after birth, a total of seven groups of newborn female rats were treated as follows. Three NA groups received a single s.c. injection of 10, 100 or 1000 micrograms of testosterone, respectively. Similarly, three NE groups received 1, 10 or 100 micrograms of estradiol-17 beta, respectively. The remaining one group was injected with oil vehicle only, and served as controls. At 8 weeks of age, animals were killed by rapid decapitation. PRL, estradiol and progesterone were measured in the plasma. Anterior pituitary (AP) was weighed, and AP PRL content was measured. NA and NE, at the highest doses, resulted in a similar degree of hyperprolactinemia and hyperestrogenemia showing an effect ratio of about 1:10. This ratio was, however, not true with the lower doses. Furthermore, there was no dose-dependency in the effect of NE on the plasma PRL and estradiol levels. In turn, plasma progesterone levels were dose-dependently decreased by both NA and NE. AP PRL content, expressed per AP, was significantly higher than control values in only NA (1000 micrograms) and NE (100 micrograms) groups. AP weight was increased by NA (1000 micrograms) but not by any NE treatment. These results indicate that NA and NE do not always exert similar effects on the PRL secretion or on several other related parameters. Therefore, aromatization of testosterone to estradiol does not appear to be the sole mechanism mediating the neuroendocrine consequences of NA.  相似文献   

14.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

15.
—Alterations in whole-brain and hypothalamic levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine (NE), dopamine (DA) as well as the turnover rates of NE and DA of adult male rats were analysed fluorometrically at either 3 weeks or 6 weeks following castration. Significant increases were observed in whole-brain (minus hypothalamus) 5-HIAA levels and hypothalamic DA levels, fractional rate constants and utilization rates at the 3 but not the 6 week intervals. Elevated levels of 5-HT were observed at both time intervals while an increase in whole-brain DA was seen only at the 6 week interval. Whole brain NE turnover rates of castrated animals did not differ significantly from those of sham-castrate control animals at either test interval. However, a tendency toward increased hypothalamic NE turnover rates was seen in the castrated animals. These biochemical changes resulted in decreased NE/5-HT and DA/5-HT ratios for the castrate rats as compared to controls. The results are discussed in relation to emotional and aggressive behavior and are interpreted as being consistent with the hypothesis purporting an inhibitory role for 5-HT and excitatory role for NE and DA in sex-specific behavior patterns including aggression.  相似文献   

16.
Y Asano  T Moroji 《Life sciences》1974,14(8):1463-1472
The relationship between daily rhythms of hypothalamic norepinephrine (NE) and serotonin (5HT) contents and the circadian rhythm of plasma corticosterone (Comp. B) levels was studied in the rat. It was found that levels of hypothalamic NE, 5HT and plasma Comp. B exhibited distinct daily flucturations in the control condition. In animals treated with methamphetamine, the daily rhythms of hypothalamic 5HT contents and plasma Comp. B levels remained unchanged, whereas the daily rhythm of hypothalamic NE contents was completely abolished. As a result, it was suggested that the daily rhythm of hypothalamic NE is not functionally related to the circadian change of pituitary-adrenocortical activity.  相似文献   

17.
Two surges of prolactin (PRL) are observed daily during pseudopregnancy (PSP) in the rat: the nocturnal (N) surge at dawn and the diurnal (D) surge in the evening. In order to clarify differences in the controlling mechanisms of the two types of PRL surges, we attempted to examine the turnover rates of dopamine (DA) and norepinephrine (NE) in the preoptic-anterior hypothalamus (PAH) and mid-posterior hypothalamus (MPH) on day 5-6 of PSP. The turnover rates of DA in the hypothalamus were inversely correlated with the serum PRL levels at the D surge when a significant increase in serum PRL was accompanied by not only a marked decrease in turnover rates of DA in the PAH, but also a slight decrease in turnover rates of the amine in the MPH. Contrarily, no significant decrease occurred in the turnover rates of DA in the hypothalamus at the N surge. There was no obvious correlation between the turnover rates of NE in the hypothalamus and the serum PRL levels at either PRL surge. These findings suggest that decreased turnover rates of DA in the hypothalamus are involved in the D surge, and it is most probable that the N PRL surge occurs under the control of another factor such as the hypothalamic PRL-releasing factor.  相似文献   

18.
Cyclosporine (CyA) is extremely useful as an immunosuppressant and it is believed that at least some of its actions are due to antagonizing PRL effects. To determine whether the reported ability of CyA to inhibit gonadotropin release can be modified by PRL, we have examined the effects of treatment of normal and hyperprolactinemic rats with CyA in vivo on the release of LH, FSH and PRL from their pituitaries in vitro. Hyperprolactinemia was induced by implantation of capsules containing diethylstilbestrol (DES) and the animals were examined while the capsules were still in place (DES-IN) or after they had been removed (DES-OUT). Treatment with CyA significantly reduced plasma LH levels in control DES-IN rats without reducing basal LH release from the pituitaries of these animals in vitro. In the DES-IN rats, CyA exposure in vivo did not modify plasma PRL levels, but reduced PRL release in vitro, and interfered with the inhibitory action of dopamine (DA) on PRL release. The effect of DA on gonadotropin release in vitro was modified by CyA treatment. Administration of CyA failed to antagonize the suppressive effects of hyperprolactinemia on plasma LH and FSH levels or on the basal rates of gonadotropin release by incubated pituitaries. We conclude that CyA can reduce PRL release but does not interfere with the actions of PRL on anterior pituitary function.  相似文献   

19.
To study the possible involvement of hypothalamic vasoactive intestinal polypeptide (VIP) in regulating the secretion of prolactin (PRL), the effect of anti-VIP rabbit serum on serotonin (5-HT)-induced PRL release was examined in urethane-anesthetized male rats. Anti-VIP serum (AVS) or normal rabbit serum (NRS) was infused into a single hypophysial portal vessel of the rat for 40 min at a rate of 2 microliters/min with the aid of a fine glass cannula and 5-HT was injected into a lateral ventricle 10 min after the start of the infusion. Intraventricular injection of 5-HT (10 micrograms/rat) caused an increase in plasma PRL levels in control animals infused with NRS and 5-HT-induced PRL release was blunted in animals infused with AVS (mean +/- SE peak plasma PRL: 118.9 +/- 19.8 ng/ml vs 54.7 +/- 16.2 ng/ml, p less than 0.05). These findings suggest that the secretion of PRL induced by 5-HT is mediated, at least in part, by hypothalamic VIP release into the hypophysial portal blood in the rat.  相似文献   

20.
Introduction of the human growth hormone (hGH) gene fused with mouse metallothionein I promoter into domestic mice leads to ectopic synthesis of hGH, marked stimulation of somatic growth, and female sterility. Transgenic females (produced by mating transgenic males to normal females) mated but failed to become pregnant or pseudopregnant as evidenced by the recurrence of vaginal plugs every 5-7 days. Daily injections of 1 mg progesterone, starting on day 1 postcoitum (p.c.), maintained pregnancy, suggesting that the sterility of these animals is due to inadequate luteal function. In ovariectomized female transgenic mice, median eminence (ME) turnover of dopamine (DA) was increased, and plasma prolactin (PRL) levels were reduced, presumably because of the known lactogenic activity of hGH in rodents. From these observations we suspected that either 1) the corpora lutea of these animals are unresponsive to lactogenic hormones, or 2) hGH by stimulating tuberoinfundibular dopaminergic (TIDA) neurons interferes with the increase in PRL release that normally follows mating and this, in turn, leads to luteal failure. To distinguish between these possibilities, transgenic females were treated with PRL-secreting ectopic pituitary transplants from normal females of the same strain on day 1 p.c. Eight of ten treated females became pregnant and delivered litters. We conclude that infertility of transgenic female mice with hGH expression is due to activation of the TIDA system, suppression of endogenous PRL release, and luteal deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号