首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytochrome control of cucumber seed germination is temperature-dependent. A prolonged exposure to radiation from broad spectrum far red sources (Pfr/P = 0.05 to 0.07) prevents germination at temperatures below 20 C. Above 20 C there is no inhibition and it appears as if there is an escape from phytochrome control. However, radiation from a monochromatic, narrow band 730 nanometer source (Pfr/P < 0.02) inhibits germination at temperatures above 20 C. This result supports the idea that, even at high temperatures, Pfr is responsible for the activation of germination. After 4 days of exposure to far red, a short red irradiation is quite effective in promoting germination if temperatures during the dark incubation periods are maintained below 20 C; red becomes effective at temperatures above 20 C. Promotion of germination will take place at a temperature of 25 C or higher without red irradiation. Again, we have an apparent escape from phytochrome control at high temperatures. However, if higher temperatures are used for only short periods, 2 to 6 hours, in combination with short red irradiation, one can demonstrate that activation of germination at high temperatures is still dependent on phytochrome. Phytochrome is probably destroyed during prolonged exposure to far red. Thus, the subsequent short red irradiation establishes levels of Pfr which may not be sufficient to promote germination at low temperatures but are probably adequate at high temperatures.  相似文献   

2.
Germination of tomato cv. New Yorker seed is inhibited at 35°C. This thermoinhibition was partially counteracted by application of GA4+7 alone, the compound applied in combination with ACC or ethephon markedly enhancing the process. The latter compound alone was not able to induce germination at 35 °C. Thermoinhibition of seeds at 35 °C was also counteracted by fluridone, an inhibitor of ABA biosynthesis. At 25 °C, an optimal temperature, ABA inhibited germination of New Yorker seeds. Although another known growth inhibitor MeJA, when applied at an optimal temperature (25 °C), had also a slightly inhibitory effect on germination of those seeds and clearly delayed the process, inhibitors of its biosynthetic pathway (ibuprofen, indoprofen, antypiryne and salicylic acid) did not remove thermoinhibition at 35 °C. An increase in endo-β-mannanase activity after 24 hours of incubation at 35 °C was observed in the seeds incubated in the presence of gibberellins, ACC, ethephon, fluridone used alone and in combinations, but it was not clearly correlated with the effects of these compounds on alleviation of seed germination. However, fluridone present in the same incubation medium at 35 °C with ABA was able to counteract the inhibitory effect of ABA on endo-β-mannanase activity. The results of our study suggest that gibberellins, ethylene (produced from ACC or ethephon) and ABA, but not jasmonates, regulate tomato seed germination at supraoptimal temperatures. Alleviation of thermoinhibition of New Yorker seed germination by plant growth regulators and fluridone is partially associated with their controlling endo-β-mannanase activity.  相似文献   

3.
The effects of light and temperature on the germination and growth of Luffa aegyptiaca were investigated both in the laboratory and in the field. The seeds germinated in both darkness and light but germination was better in the light. At constant temperatures germination was best at 21°C, while alternating temperatures of 21 and 31°C and 15 and 41°C caused higher germination than the most favourable constant temperature. Constant temperatures of 15 and 31°C and alternating temperatures of 21 and 41°C resulted in very low germination, whereas no germination occurred at 41°C and at alternating temperatures of 31 and 41°C. Soil depth caused only a delay in seed germination, as it did not affect the total germination. High temperature and high light intensity resulted in good seedling growth in terms of dry weight, leaf area and relative growth rate. High temperature and low light intensity caused increased plant height and high shoot weight ratio, both of which manifested in seedling etiolation. They also caused high leaf area ratio. Under low temperatures, irrespective of light intensity, growth was generally poor, but it was significantly poorer under low light intensity, which also caused high root weight ratio. High light intensity was principally responsible for high leaf weight ratio. The results help to explain the abundance of the species in newly cleared areas in Lagos and its environs.  相似文献   

4.
The threatened Gulf of St. Lawrence Aster, Symphyotrichum laurentianum Fernald (Nesom), is an annual coastal halophyte of the southern Gulf of St. Lawrence, Canada. We examined the effects of salinity (0–20 g/L) and temperature (16–30°C) on germination of S. laurentianum seeds over 32 days. The time‐course of germination was significantly affected by both salinity and temperature. At lower temperatures (16°C and 23°C), germination was inhibited by salt water at days 16 and 32. However, at 30°C germination rates after 16 days were highest at an intermediate salinity, whereas after 32 days germination was uniformly high in all salinity treatments. Overall, the effect of temperature on germination was much stronger than the effect of salinity. Delays in germination resulting from exposure to salinity or from low soil temperatures could set up strong size asymmetries between seedlings of S. laurentianum and the surrounding vegetation, leading to suppression of growing seedlings via shading. Because germination has the potential to be a significant population bottleneck for this seed‐dependent annual, conservation efforts should consider microsite suitability for germination in the management of natural populations and in the selection of sites for explants.  相似文献   

5.
The yield and performance of seeds from crops of winter-hardy, bolting-resistant onion grown at temperatures of 15–16, 18–19 and 22–23°C in 1979, 1980 and 1982 were compared. Yields of seed from crops grown at 22–23°C were lower than those from crops grown at lower temperatures but the seeds ripened between 11 and 32 days earlier. Seeds from crops grown at mean temperatures of above 18°C gave higher percentage germination when imbibed at 30°C than 20°C and they also gave higher percentage seedling emergence than those from crops grown at lower temperatures. Seedlings from seeds produced at mean temperatures above 18°C were heavier than those from seeds of a similar weight but produced at lower temperatures. None of these differences were associated with differences in seed weight, embryo weight or seed dormancy but were positively correlated with differences in seed N-concentration. The differences were also associated with the rate of imbibition of water as high germination, high N-content seeds had a slower rate of imbibition than low germination, low N-content seeds of the same weight.  相似文献   

6.
Germination of gray birch (Betula populifolia) seed collected from anthracite mine spoils in northeastern Pennsylvania was studied. Environmental conditions of the spoil banks are such that high mortality may occur at seed and germination stages because of low moisture availability and thermal stress. The mine spoil banks are harsh environments with respect to key seed germination factors: percent soil moisture as low as 1.8% and soil surface temperatures reaching 59°C. In the field, gray birch typically germinated in mid-April prior to severe environmental stress. Trends in germination success were inversely related to rising soil temperature and decreasing soil moisture availability. Although seeds were capable of survival and germination under laboratory conditions of constant temperatures in excess of 55°C, dramatic decline in germination was observed under fluctuating temperature regimes likely to be experienced in the field. No germinations occurred under fluctuating temperatures in excess of 30°C. Germinations in the field were seen to end after mid-June when substrate temperatures exceeded 30°C.  相似文献   

7.
Experiments on the production of two separate crops of lettuceseeds, each in three different temperature environments, andsubsequent tests on the seed are described. Low production temperatures(20 °C day, 10 °C night) gave a low yield of large seeds,and high temperatures (30 °C, 20 °C) gave a higher yieldof much smaller seed; the highest yield came from medium temperatures(25 °C, 15 °C), which gave medium-sized seed. After-ripening,manifested as an increase in percentage germination at hightemperatures with increase in seed age, occurred in seed fromall three production environments of the first crop, thoughthere were differences in degree, and in that from the two higherproduction temperatures, but not the lowest, of the second crop.Measurements of the forces required to penetrate the layerssurrounding the embryo showed an inverse relationship with temperatureof the production environment for pericarps but not for endosperms,and a gradual reduction during storage for pericarps but notendosperms. Measurements of germination potential showed thatembryos from seeds produced in cool conditions were less ableto cope with high temperatures than those from warner conditions.These results are discussed in relation to the control of germinationin lettuce. Lettuce, Lactuca sativa (L.), seed production, germination, seed coverings, germination potential  相似文献   

8.
Celery seeds (Apium graveolens L.) were allowed to imbibe in the dark for different periods at 28. 32. 37 or 41°(the high temperature pre-treatmem or HTP) prior to transfer to 15, 17, 19.5 or 22°C in white light (the low temperature treatment or LTT). The effect of HTP's at 28. 32 and 37°C was to lower the upper temperature limit for germination and this effect increased with increase in the temperature and duration of the HTP. Increasing exposure to an HTP of 41 °C, however, did not appear to lower the upper temperature limit for germination but reduced the viability of the seeds. This trend of increased inhibition of germination caused by increasingly higher temperatures was reversed when the transfer was to a 22°C LTT after a 4 day HTP at 37°C. When the temperature of (he HTP was relatively low and transfer was to a low LTT. or if the HTP was of a brief duration, the rate of germination was increased as compared to seeds not given an HTP. However, when the temperature and duration of the HTP were increased, the rate of germination became slower than that of seeds not given an HTP, i.e. the time taken for the seeds to recover from the HTP-induced dormancy increased with the temperature and duration of the HTP. The decrease in the germination rate was caused by a delay in the start and not a slowing of the rate of embryo elongation within the seed.  相似文献   

9.
The germination response of different sized seeds from individuals of a Mediterranean fire-prone shrub (Cistus ladanifer) was investigated in relation to pre-germination heating. A control (no heating), a low temperature during a short exposure time (50°C during 5 min), a high temperature during a short exposure time (100°C during 5 min) and a high temperature during a long exposure time (100°C during 15 min) were applied to seeds from different individual plants with different mean seed weight. These pre-germination treatments resemble natural germination scenarios for the studied species, absence of fire, low intensity pasture fire, typical Mediterranean shrub fire, and severe fire with high fuel load. Mean seed weight only showed a marginally significant positive correlation with the proportion of germinated seeds whatever the pre-germination treatment. These results suggest that seed dormancy is unrelated to seed size and that under the experimental conditions used in this study, the effect of seed size on seed germination is low. Nevertheless, larger seeds could be favoured in natural conditions, especially under the high competition scenario which arise after wildfires. Control seeds showed a negative correlation between seed size and germination velocity suggesting that lighter seeds could take advantage from early germination in recruitment events in the absence of wildfires. Nevertheless, even the lower pre-germination heating treatment turns this correlation in not significant, suggesting a strong selection pressure (unrelated to seed size) for early germination after fire events. In our study, different sized seeds of C. ladanifer seem to perform better under different germination scenarios suggesting that seed size variation could be maintained by the alternation of recruitments without wildfires and recruitments after wildfire events.  相似文献   

10.
Invasive alien plants impact ecosystems, which often necessitates their removal. Where indigenous species recovery fails following removal alone, an active intervention involving reintroduction of seed of native species may be needed. This study investigated the potential for a combination of the fire cues of smoke and heat as a pre‐treatment of seeds in breaking dormancy and facilitating increased germination. Species were selected to represent different functional types within Cape Flats Sand Fynbos; a fire‐prone, critically endangered vegetation type in South Africa. Seeds were exposed to either a heat pulse (temperatures between 60 and 300°C for durations of between 30 s and 20 min) or dry after‐ripening (1 or 2 months at milder temperatures of 45°C or less). Thereafter, seeds were soaked in smoke solution for 18 h and subsequently placed on agar at 10/20°C for germination. Most species fell into one of two main groups: Seed germination in the first group was greatest following a lower temperature (60°C) heat pulse, an extended period of mild temperature (20/40°C or 45°C) exposure, or no pre‐treatment with heat. Seed germination in the second group was promoted after brief exposure to higher (100°C) temperatures. No germination occurred in any species following heat treatments of 150°C or higher. Species which responded better to higher temperatures were mainly those possessing physical dormancy, but seed morphology did not correlate with germination success. This study showed that heat stimulation of seeds is more widespread in fynbos plant families than previously known and will enable the development of better seed pre‐treatment protocols before large‐scale sowing as an active restoration treatment after alien plant clearing.  相似文献   

11.
Attempts to elucidate the physiological basis of cold-resistance during germination led to the investigation of the germination of seeds at low temperature, the effect of pathogenic and parasitic microorganisms being excluded. At the various experimental temperatures (4°, 6°, 8°, 10° and 14°C) it was found that seed samples of different varieties of maize respond to conditions close to the temperature minimum for germination in three quantitatively different ways. Firstly, caryopses germinate considerably later than at higher temperatures, secondly, the kernels will not germinate even after a prolonged period, without losing their viability and, thirdly, in some of the caryopses the embryos perish. The lower the temperature used the greater the inhibition of germination and the higher the mortality of the embryos. The increase in mortality with decreasing temperature indicates that the mortality is primarily due to the actual effect of the low temperature. Samples of seeds displayed quantitative difference in the above mentioned response. Only when fungicide-treated seed material was used for the cold-resistance experiments was a significant relationship found to exist between this property and the general germinating capacity or mortality at the same low temperature.  相似文献   

12.
Background: Fire is an important ecological factor in the Cerrado (Brazilian savanna). However, comparative studies on the effect of high temperatures experienced during fires on seed germination of native and invasive grass species are few.

Aims: To assess germination responses to simulated fire temperatures by seeds of invasive and native Cerrado grasses.

Methods: Heat-shock treatments (50 °C, 70 °C, 90 °C, 110 °C, 130 °C or 150 °C) were applied to seeds of 10 species of native and invasive grasses. For each temperature, the seeds were heated in a dry-air flow for 2 or 5 min. This combination of temperatures and exposure times simulated the soil conditions during typical Cerrado fires.

Results: Temperature treatment was significantly related to germination, and the effect varied according to species. Heat shock did not increase germination in either the native or the invasive species. Exposure time was important for only two species, and four species showed a significant increase in mean germination time.

Conclusions: Species showed different tolerances to high temperatures. It was not possible to differentiate the native and invasive grasses only by their tolerance to high temperatures, suggesting that fire alone may not be an efficient management tool to control the invasive species studied here.  相似文献   

13.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

14.
Abstract. The mechanism involved in a bimodal germination-temperature response in pre-soaked cocklebur (Xanthium pennsylvanicum Wallr.) seeds was studied with special reference to adenylate metabolism. Exposure to either low (optimal at 8°C) or high (optimal at 34°C) temperature which was effective in inducing the germination of the seeds brought about the accumulation of ATP in them. The ATP level remained unchanged at temperatures around 23°C. Pretreatment with KCN, stimulating germination even at 23°C, subsequently increased the ATP content, total adenylate pool and energy charge (EC) in the axial tissue prior to germination above those of the untreated controls. The lower the treatment temperature, the greater the inhibitory effect of KCN on ATP formation. An increase in germination following an increasing duration of pre-soaking at 8°C was comparable to increasing both the ATP content and total adenylate pool of axes, but not the EC value. Similarly, changes in germination following an increased exposure duration at 8°C correlated with changes in ATP content rather than EC value in the axes. Unlike the case of chilling, an increase in ATP level in response to 34°C was greater in the early period of water imbibition, during which times its germination-stimulating effect appeared more striking than in the later period, and it occurred without a concomitant rise in EC value because of the increased supply of AMP. Such a supply of AMP was reduced in the presence of benzohydroxamic acid or propyl gallale, inhibitors of an alternative respiratory pathway. It was thus concluded that both low temperature, coupled with warm temperature, and high temperature, by itself, can induce seed germination by increasing the ATP level as well as the total adenylate pool, but not the EC value, in the axial tissue. Further, that increases in both the ATP level and the adenylate pool especially are required for seed germination to proceed, probably depending on the activities of the cytochrome and alternative respiration pathways, respectively.  相似文献   

15.
High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.  相似文献   

16.
A research was carried out to evaluate the influence of temperature on seed respiration response of maize, cotton, grain sorghum and sunflower during imbibition, and to define reliable indices for a fast evaluation of cold-sensitivity at germination level in plants. The seed respiration activity was measured during seed imbibition at 25 °C (optimal) and 15 °C (suboptimal) constant temperatures, using a homemade respiration chamber adapted to an infrared gas analyzer. At 15 °C, sunflower and sorghum maintained high levels of seed germination (≥90 %), whilst this last dropped in cotton (36.7 %) and maize (27.8 %). With respect to this, cotton and maize seem to be cold sensitive during germination. Instantaneous seed respiration during imbibition versus temperature or thermal time could not be used as a good indicator for cold tolerance, since the levels of CO2 recorded at 15 °C in cotton (higher than the other species) and maize (similar to that of sorghum and sunflower) did not correspond to adequate seed germination. Differently, the rates (b coefficient of linear regressions) of accumulation of CO2 respired at optimal and suboptimal temperatures during the first hours of imbibition (up to approximately 24 h from the start of experiment), were significantly different in maize and cotton, whilst they did not differ in sorghum and sunflower. Therefore, the shift between slopes may represent a reliable index for seed cold-sensitivity assessment during early germination.  相似文献   

17.
Patterns of germination and seedling emergence at different temperatures were determined for a wide range of sugar beet accessions. There was good differentiation among seed lots and a close relationship between germination and emergence in temperature regimes of 20 h at 5 °C: 4 h at 7 °C, and constant 5 °C. Failure to germinate at temperatures between 5°C and 7 °C was more often associated with suppression of germination than with death of embryos. Results indicated that tests of germination at low temperatures would lead to more accurate predictions of field emergence than standard tests at 20 °C. Furthermore, tests at 20 °C may not give accurate estimates of potential viability.  相似文献   

18.
The germination of seeds of three species of forage grasses, Lolium perenne, Festuca pratensis and Dactylis glomerata, was studied after storage for 3–5 years under five different storage conditions: in aluminium foil packets at —25°C, 0°C and laboratory temperature (c. 18°C), and in manilla paper packets at 0°C and laboratory temperature. With Lolium perenne and Festuca pratensis high germination values at 3 and 7 days were obtained from seed stored at — 25 °C and 0°C in foil packets (5% moisture), but at laboratory temperatures, seed from foil packets gave lower germination values than those from manilla paper packets. At all three temperatures Dactylis glomerata germination after 7 and 14 days was higher in seed stored in foil than in manilla packages. With all three species stored in manilla packets, germination was higher after laboratory than cold storage.  相似文献   

19.
Esashi, Y., Oota, H., Saitoh, H. and Kodama, H. 1985. Lightactions in the germination of cocklebur seeds. III. Effectsof pre-treatment temperature on germination responses to far-redlight and on dark germination in the red light-requiring upperseeds.—J. exp. Bot. 36: 1465-1477. Red light (R) responsiveness in R-requiring upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds changed in differentpatterns during a soaking period at different temperatures.At temperatures above 23°C, the responsiveness increasedand then decreased. At lower temperatures (3–18°C),however, it continued to increase throughout an experimentalperiod. The lower temperatures caused germination in the subsequentdark at 33°C, regained the R responsiveness and acquiredthe dark germinability when subsequently exposed to 8°C,to an extent proportional to the duration of the chilling. Far-red (FR) was inhibitory to germination in an earlier soakingperiod at lower temperatures, but its effect gradually decresed,and finally turned promotive. The negative FR response was repeatedlycontrolled by the following R irradiation. However, the positiveFR response was enhanced by an immediate R irradiation, andFR/R reversibility occurred after the second FR. In contrastto the R responsiveness and dark germinability, the positivegermination response to FR was not induced by soaking at 3°C,in which the growth of the axial tissue as a photoreceptivesite did not occur at all. Similarly, it was not manifestedwhen the seeds soaked at 33°C were subsequently subjectedto 8°C. Key words: Cocklebur seeds, dark germination, far-red light, low temperature, red light, seed germination, Xanthium pennsylvanicum  相似文献   

20.
Prosopis chilensis is a plant highly tolerant to heat shock   总被引:1,自引:0,他引:1  
At temperatures between 25 and 35°C, 100% of Prosopis chilensis seeds germinated within 24 h. At higher temperatures, the germination rate was reduced; at 50°C, seeds did not germinate. After germination at 25°C, the optimal temperature for seedling growth was 35°C and the seedlings did not grow at a temperature of 50°C. However, when germination was at 35°C, the optimal temperature for seedling growth was 40°C and some seedlings grew at 50°C, suggesting that thermotolerance was induced during seed germination at 35°C. Further thermotolerance can be induced in seedlings germinated at 35°C, by exposing them to 40°C for 2h. Under these conditions, seedlings exhibited increased growth rate at 45 and 50°C. Fluorography of SDS-polyacrylamide gel electrophoresis of the proteins synthesized and accumulated during 2 h at temperatures of 35, 40, 45 and 50°C in the presence of [35S]methionine revealed the expression of 11 proteins not detectable at 35°C. Most of the proteins present at 35°C also increased in expression. The temperature for maximal expression of these proteins was 45°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号