首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD8(+) T-cell responses can be induced by DNA immunization, but little is known about the kinetics of these responses in vivo in the absence of restimulation or how soon protective immunity is conferred by a DNA vaccine. It is also unclear if CD8(+) T cells primed by DNA vaccines express the vigorous effector functions characteristic of cells primed by natural infection or by immunization with a recombinant live virus vaccine. To address these issues, we have used the sensitive technique of intracellular cytokine staining to carry out direct ex vivo kinetic and phenotypic analyses of antigen-specific CD8(+) T cells present in the spleens of mice at various times after (i) a single intramuscular administration of a plasmid expressing the nucleoprotein (NP) gene from lymphocytic choriomeningitis virus (LCMV), (ii) infection by a recombinant vaccinia virus carrying the same protein (vvNP), or (iii) LCMV infection. In addition, we have evaluated the rapidity with which protective immunity against both lethal and sublethal LCMV infections is achieved following DNA vaccination. The CD8(+) T-cell response in DNA-vaccinated mice was slightly delayed compared to LCMV or vvNP vaccinees, peaking at 15 days postimmunization. Interestingly, the percentage of antigen-specific CD8(+) T cells present in the spleen at day 15 and later time points was similar to that observed following vvNP infection. T cells primed by DNA vaccination or by infection exhibited similar cytokine expression profiles and had similar avidities for an immunodominant cytotoxic T lymphocyte epitope peptide, implying that the responses induced by DNA vaccination differ quantitatively but not qualitatively from those induced by live virus infection. Surprisingly, protection from both lethal and sublethal LCMV infections was conferred within 1 week of DNA vaccination, well before the peak of the CD8(+) T-cell response.  相似文献   

2.
Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8(+) T-cell responses to six Ebola virus proteins were examined. CD8(+) T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8(+) cytotoxic T cells protected filovirus na?ve mice from challenge with Ebola virus. These data support a role for CD8(+) cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.  相似文献   

3.
Conventional vaccination strategies have failed for numerous pathogens, and the development of novel approaches to vaccine development is a major public health priority. Killed or subunit vaccines represent an attractive approach due to their safety, but they suffer from low immunogenicity and generally require adjuvants. In this study, the possibility of harnessing CD40 signaling for enhancing the immunogenicity of killed vaccines was investigated. Intravenous immunization of C57BL/6 mice with heat-killed Listeria monocytogenes (HKL) induced minimal immunity, but HKL administered together with an agonistic anti-CD40 mAb induced high levels of both CD4(+) and CD8(+) T cells capable of producing IFN-gamma following in vitro HKL stimulation. HKL/anti-CD40 vaccination elicited robust protection against subsequent Listeria challenge. Approximately 1000-fold fewer bacteria were detected in the liver and spleen of vaccinated mice, and vaccinated mice were also able to resist a normally lethal Listeria challenge. CD40-mediated adjuvant activity required endogenous IL-12 at the time of vaccination, and protection was mediated by both CD8(+) and CD4(+) T cells. Thus, CD40 signaling can deliver potent adjuvant activity for vaccination against intracellular pathogens and is particularly effective for pathogens requiring both CD4(+) and CD8(+) T cells for effective control.  相似文献   

4.
Seasonal influenza virus infection is a leading cause of illness and mortality in young children and the elderly each year. Current influenza vaccines generate protective antibody responses; however, these must be given annually to provide protection against serologically distinct viruses. By contrast, CD8(+) T cells are capable of recognizing conserved antigenic determinants within the influenza virion and, as such, may provide protection against a number of variant strains of the virus. CD8(+) T cells play a critical key role in controlling and resolving influenza virus infections via the production of cytokines and cytolytic mediators. This article focuses on the induction of the influenza-specific CD8(+) T-cell response and how these cells acquire and maintain effector function after induction. Moreover, we discuss how cytotoxic T-lymphocyte function correlates with protection following vaccination.  相似文献   

5.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

6.
Immunization of mice with nonviable Listeria monocytogenes generates an insufficient CD8(+) T cell response and consequently only limited protection against subsequent L. monocytogenes infection. We have recently demonstrated that depletion of regulatory CD4(+) T cells during immunization significantly enhances CD8(+) T cell responses. In the present study, we determined the impact of CD4(+) T cell depletion on the CD8(+) T cell response against heat-killed LISTERIA: Treatment of mice with anti-CD4 mAb during boost immunization with heat-killed Listeria significantly increased numbers of Listeria-specific CD8(+) T cells and improved protection against subsequent infection with L. monocytogenes. During challenge infection, numbers of Listeria-specific CD8(+) T cells were enhanced, and these cells expressed effector functions in terms of IFN-gamma production. In summary, we demonstrate that combining nonviable L. monocytogenes vaccination and CD4(+) T cell depletion improves generation of long-lasting and functional Listeria-specific CD8(+) memory T cells.  相似文献   

7.
CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.  相似文献   

8.
The development of protective immunity against many intracellular bacterial pathogens commonly requires sublethal infection with viable forms of the bacteria. Such infection results in the in vivo activation of specific cell-mediated immune responses, and both CD4+ and CD8+ T lymphocytes may function in the induction of this protective immunity. In rodent models of experimental infection with Listeria monocytogenes, the expression of protective immunity can be mediated solely by the immune CD8+ T cell subset. One major target Ag of Listeria-immune CD8+ T cells is the secreted bacterial hemolysin, listeriolysin O (LLO). In an attempt to generate a subunit vaccine in this experimental disease model, eukaryotic plasmid DNA expression vectors containing genes encoding either the wild-type or modified forms of recombinant LLO were generated and used for genetic vaccination of naive mice. Results of these studies indicate that the intramuscular immunization of mice with specifically designed plasmid DNA constructs encoding recombinant forms of LLO stimulates peptide-specific CD8+ immune T cells that exhibit in vitro cytotoxic activity. More importantly, such immunization can provide protective immunity against a subsequent challenge with viable L. monocytogenes, demonstrating that this experimental approach may have direct application in prevention of acute disease caused by intracellular bacterial pathogens.  相似文献   

9.
CD4(+) Th1 responses to virus infections are often necessary for the development and maintenance of virus-specific CD8(+) T-cell responses. However, in the present study with Friend murine retrovirus (FV), the reverse was also found to be true. In the absence of a responder H-2(b) allele at major histocompatibility complex (MHC) class II loci, a single H-2D(b) MHC class I allele was sufficient for the development of a CD4(+) Th1 response to FV. This effect of H-2D(b) on CD4(+) T-cell responses was dependent on CD8(+) T cells, as demonstrated by depletion studies. A direct effect of CD8(+) T-cell help in the development of CD4(+) Th1 responses to FV was also shown in vaccine studies. Vaccination of nonresponder H-2(a/a) mice induced FV-specific responses of H-2D(d)-restricted CD8(+) cytotoxic T lymphocytes (CTL). Adoptive transfer of vaccine-primed CD8(+) T cells to naive H-2(a/a) mice prior to infection resulted in the generation of FV-specific CD4(+) Th1 responses. This novel helper effect of CD8(+) T cells could be an important mechanism in the development of CD4(+) Th1 responses following vaccinations that induce CD8(+) CTL responses. The ability of MHC class I genes to facilitate CD4(+) Th1 development could also be considerable evolutionary advantage by allowing a wider variety of MHC genotypes to generate protective immune responses against intracellular pathogens.  相似文献   

10.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

11.
We have attempted to develop an anti-human immunodeficiency virus (HIV) lipopeptide vaccine with several HIV-specific long peptides modified by C-terminal addition of a single palmitoyl chain. A mixture of six lipopeptides derived from regulatory or structural HIV-1 proteins (Nef, Gag, and Env) was prepared. A phase I study was conducted to evaluate immunogenicity and tolerance in lipopeptide vaccination of HIV-1-seronegative volunteers given three injections of either 100, 250, or 500 microg of each lipopeptide, with or without immunoadjuvant (QS21). This report analyzes in detail B- and T-cell responses induced by vaccination. The lipopeptide vaccine elicited strong and multiepitopic B- and T-cell responses. Vaccinated subjects produced specific immunoglobulin G antibodies that recognized the Nef and Gag proteins. After the third injection, helper CD4(+)-T-cell responses as well as specific cytotoxic CD8(+) T cells were also obtained. These CD8(+) T cells were able to recognize naturally processed viral proteins. Finally, specific gamma interferon-secreting CD8(+) T cells were also detected ex vivo.  相似文献   

12.
The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8(+)-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed.  相似文献   

13.
Many virus infections give rise to surprisingly limited T-cell responses directed to very few immunodominant determinants. We have been examining the cytotoxic T-lymphocyte (CTL) response to herpes simplex virus type 1 (HSV-1) infection. Previous studies have identified the glycoprotein B-derived peptide from residues 498 to 505 (gB(498-505)) as one of at least three determinants recognized by HSV-1-specific CTLs isolated from C57BL/6 mice. We had previously found that in vitro-derived CTLs directed to gB(498-505) show a characteristic pattern of T-cell receptor (TCR) usage, with 60% of gB(498-505)-specific CD8(+) T cells expressing BV10(+) TCR beta chains and a further 20% expressing BV8S1. In this report, we confirm that this TCR V-region bias is also reflected in the ex vivo response to HSV-1 infection. A high proportion of activated CD8(+) draining lymph node cells were found to express these dominant V regions, suggesting that a substantial number of in vivo responding T cells were directed to this one viral determinant. The use of an HSV-1 deletion mutant lacking the gB(498-505) determinant in combination with accurate intracellular gamma interferon staining allowed us to quantify the extent of gB-specific T-cell dominance. Together, these results suggested that between 70 and 90% of all CD8(+) HSV-1-specific T cells target gB(498-505). While deletion of this determinant resulted in an attenuated CD8(+) T-cell response, it also permitted the emergence of one or more previously unidentified cryptic specificities. Overall, HSV-1 infection of C57BL/6 mice results in an extremely focused pattern of CD8(+) T-cell selection in terms of target specificity and TCR expression.  相似文献   

14.
Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8(+) T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8(+) T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8(+) T cells were not restored, indicating that erosion of preexisting memory CD8(+) T cells was irreversible. Irrespective of the initial numbers of memory CD8(+) T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8(+) T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8(+) T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8(+) T cells was abrogated in the absence of IFN-gamma. These studies help reveal the paradoxical role of IFN-gamma. Although IFN-gamma promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8(+) T cells in the wake of infection with heterologous pathogens.  相似文献   

15.
Tuberculosis is the number one cause of death due to infectious disease in the world today. Understanding the dynamics of the immune response is crucial to elaborating differences between individuals who contain infection vs those who suffer active disease. Key cells in an adaptive immune response to intracellular pathogens include CD8(+) T cells. Once stimulated, these cells provide a number of different effector functions, each aimed at clearing or containing the pathogen. To explore the role of CD8(+) T cells in an integrative way, we synthesize both published and unpublished data to build and test a mathematical model of the immune response to Mycobacterium tuberculosis in the lung. The model is then used to perform a series of simulations mimicking experimental situations. Selective deletion of CD8(+) T cell subsets suggests a differential contribution for CD8(+) T cell effectors that are cytotoxic as compared with those that produce IFN-gamma. We also determined the minimum levels of effector memory cells of each T cell subset (CD4(+) and CD8(+)) in providing effective protection following vaccination.  相似文献   

16.
Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8(+) T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8(+) T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8(+) T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8(+) T-cell response, profile may assist in controlling HIV disease.  相似文献   

17.
Affordable therapeutic strategies that induce sustained control of human immunodeficiency virus type 1 (HIV-1) replication and are tailored to the developing world are urgently needed. Since CD8(+) and CD4(+) T cells are crucial to HIV-1 control, stimulation of potent cellular responses by therapeutic vaccination might be exploited to reduce antiretroviral drug exposure. However, therapeutic vaccines tested to date have shown modest immunogenicity. In this study, we performed a comprehensive analysis of the changes in virus-specific CD8(+) and CD4(+) T-cell responses occurring after vaccination of 16 HIV-1-infected individuals with a recombinant modified vaccinia virus Ankara-vectored vaccine expressing the consensus HIV-1 clade A Gag p24/p17 sequences and multiple CD8(+) T-cell epitopes during highly active antiretroviral therapy. We observed significant amplification and broadening of CD8(+) and CD4(+) gamma interferon responses to vaccine-derived epitopes in the vaccinees, without rebound viremia, but not in two unvaccinated controls followed simultaneously. Vaccine-driven CD8(+) T-cell expansions were also detected by tetramer reactivity, predominantly in the CD45RA(-) CCR7(+) or CD45RA(-) CCR7(-) compartments, and persisted for at least 1 year. Expansion was associated with a marked but transient up-regulation of CD38 and perforin within days of vaccination. Gag-specific CD8(+) and CD4(+) T-cell proliferation also increased postvaccination. These data suggest that immunization with MVA.HIVA is a feasible strategy to enhance potentially protective T-cell responses in individuals with chronic HIV-1 infection.  相似文献   

18.
A critical goal of vaccine development for a wide variety of pathogens is the induction of potent and durable mucosal immunity. However, it has been assumed that this goal would be difficult to achieve by systemic vaccination due to the anatomic and functional distinctness of the systemic and mucosal immune systems and the resultant compartmentalization of immune responses. In this study, we show that Ag-specific CD8(+) T lymphocytes traffic efficiently to mucosal surfaces following systemic vaccination. Intramuscular immunization with recombinant adenovirus (rAd) vector-based vaccines expressing SIV Gag resulted in potent, durable, and functional CD8(+) T lymphocyte responses at multiple mucosal effector sites in both mice and rhesus monkeys. In adoptive transfer studies in mice, vaccine-elicited systemic CD8(+) T lymphocytes exhibited phenotypic plasticity, up-regulated mucosal homing integrins and chemokine receptors, and trafficked rapidly to mucosal surfaces. Moreover, the migration of systemic CD8(+) T lymphocytes to mucosal compartments accounted for the vast majority of Ag-specific mucosal CD8(+) T lymphocytes induced by systemic vaccination. Thus, i.m. vaccination can overcome immune compartmentalization and generate robust mucosal CD8(+) T lymphocyte memory. These data demonstrate that the systemic and mucosal immune systems are highly coordinated following vaccination.  相似文献   

19.
Neutrophils have an important role in early host protection during influenza A virus infection. Their ability to modulate the virus-specific adaptive immune response is less clear. Here, we have used a mouse model to examine the impact of neutrophils on CD8(+) T-cell responses during influenza virus infection. CD8(+) T-cell priming, expansion, migration, cytokine secretion and cytotoxic capacity were investigated in the virus-infected airways and secondary lymphoid organs. To do this, we utilised a Ly6G-specific monoclonal antibody (mAb; 1A8) that specifically depletes neutrophils in vivo. Neutrophil depletion early after infection with influenza virus strain HKx31 (H3N2) did not alter influenza virus-derived antigen presentation or na?ve CD8(+) T-cell expansion in the secondary lymphoid organs. Trafficking of virus-specific CD8(+) T cells into the infected pulmonary airways was also unaltered. Instead, early neutropenia reduced both the overall magnitude of influenza virus-specific CD8(+) T cells, together with impaired cytokine production and cytotoxic effector function. Therefore, neutrophils are important participants in anti-viral mechanisms that sustain effective CD8(+) T-cell responses in the respiratory tract of influenza virus-infected mice.  相似文献   

20.
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号