首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Genomic analysis has revealed heterogeneity among bacterial 16S rRNA gene sequences within a single species; yet the cause(s) remains uncertain. Generalized transducing bacteriophages have recently gained recognition for their abundance as well as their ability to affect lateral gene transfer and to harbor bacterial 16S rRNA gene sequences. Here, we demonstrate the ability of broad-host-range, generalized transducing phages to acquire 16S rRNA genes and gene sequences. Using PCR and primers specific to conserved regions of the 16S rRNA gene, we have found that generalized transducing phages (D3112, UT1, and SN-T), but not specialized transducing phages (D3), acquired entire bacterial 16S rRNA genes. Furthermore, we show that the broad-host-range, generalized transducing phage SN-T is capable of acquiring the 16S rRNA gene from two different genera: Sphaerotilus natans, the host from which SN-T was originally isolated, and Pseudomonas aeruginosa. In sequential infections, SN-T harbored only 16S rRNA gene sequences of the final host as determined by restriction fragment length polymorphism analysis. The frequency of 16S rRNA gene sequences in SN-T populations was determined to be 1 × 10−9 transductants/PFU. Our findings further implicate transduction in the horizontal transfer of 16S rRNA genes between different species or genera of bacteria.  相似文献   

2.
Despite an increasing interest in horizontal gene transfer in bacteria, the role of generalized transduction in this process has not been well investigated yet. Certainly one of the reasons is that only a small fraction of general transducing bacteriophages have been characterized, because many bacterial hosts needed for propagation and identification are not culturable or are simply unknown. A method for host-independent detection of transducing bacteriophages was developed. Phage-encapsulated DNA was used as a template for PCR amplification of 16S ribosomal DNA using primers specific for the 16S rRNA genes of most eubacteria. Sequencing of the cloned amplification products permits the identification of the host bacteria. The Salmonella phage P22 was used as an example. Applying this method to a sample of the supernatant of the mixed liquor in the aeration tank of an activated sludge treatment works revealed the presence of transducing phages infecting several bacterial species for which such phages have not yet been described. This method is suitable for estimating the contribution of generalized transduction to horizontal gene transfer in different habitats.  相似文献   

3.
Despite an increasing interest in horizontal gene transfer in bacteria, the role of generalized transduction in this process has not been well investigated yet. Certainly one of the reasons is that only a small fraction of general transducing bacteriophages have been characterized, because many bacterial hosts needed for propagation and identification are not culturable or are simply unknown. A method for host-independent detection of transducing bacteriophages was developed. Phage-encapsulated DNA was used as a template for PCR amplification of 16S ribosomal DNA using primers specific for the 16S rRNA genes of most eubacteria. Sequencing of the cloned amplification products permits the identification of the host bacteria. The Salmonella phage P22 was used as an example. Applying this method to a sample of the supernatant of the mixed liquor in the aeration tank of an activated sludge treatment works revealed the presence of transducing phages infecting several bacterial species for which such phages have not yet been described. This method is suitable for estimating the contribution of generalized transduction to horizontal gene transfer in different habitats.  相似文献   

4.
Two bacteriophage collections were examined with regard to their ability to form plaques on multiple bacterial host species. Nine of 10 phages studied were found to be broad-host-range bacteriophages. These phages fell into two groups. Group 1, the SN series, was isolated from sewage treatment plant samples with Sphaerotilus natans ATCC 13338 as a host. The DNAs of these bacteriophages contained modified bases and were insensitive to cleavage by type I and II restriction endonucleases. The efficiency of plating of these bacteriophages was changed only slightly on the alternate host. Group 2, the BHR series, was isolated by a two-host enrichment protocol. These bacteriophages were sensitive to restriction, and their efficiency of plating was dramatically reduced on the alternate host. Our results suggest that a multiple-host enrichment protocol may be more effective for the isolation of broad-host-range bacteriophages by avoiding the selection bias inherent in single-host methods. At least two of the broad-host-range bacteriophages mediated generalized transduction. We suggest that broad-host-range bacteriophages play a key role in phage ecology and gene transfer in nature.  相似文献   

5.
Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.  相似文献   

6.
AIMS: To identify Bacillus species and related genera by fingerprinting based on ribosomal RNA gene restriction patterns; to compare ribosomal RNA gene restriction patterns-based phylogenetic trees with trees based on 16S rRNA gene sequences; to evaluate the usefulness of ribosomal RNA gene restriction patterns as a taxonomic tool for the classification of Bacillus species and related genera. METHODS AND RESULTS: Seventy-eight bacterial species which include 42 Bacillus species, 31 species from five newly created Bacillus-related genera, and five species from five phenotypically related genera were tested. A total of 77 distinct 16S rRNA gene hybridization banding patterns were obtained. The dendrogram resulting from UPGMA analysis showed three distinct main genetic clusters at the 75% banding pattern similarity. A total of 77 distinct 23S and 5S rRNA genes hybridization banding patterns were obtained, and the dendrogram showed four distinct genetic clusters at the 75% banding pattern similarity. A third dendrogram was constructed using a combination of the data from the 16S rRNA gene fingerprinting and the 23S and 5S rRNA genes fingerprinting. It revealed three distinct main phylogenetic clusters at the 75% banding pattern similarity. CONCLUSIONS: The Bacillus species along with the species from related genera were identified successfully and differentiated by ribosomal RNA gene restriction patterns, and most were distributed with no apparent order in various clusters on each of the three dendrograms. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data indicate that ribosomal RNA gene restriction patterns can be used to reconstruct the phylogeny of the Bacillus species and derived-genera that approximates, but does not duplicate, phylogenies based on 16S rRNA gene sequences.  相似文献   

7.
8.
9.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

10.
The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins.  相似文献   

11.
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free‐living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.  相似文献   

12.
DNA sequencing and polymerase chain reaction (PCR) assays with lineage-specific primers were used to analyze the diversity of 276 isolates of Bradyrhizobium sp. nodule bacteria associated with 13 native legumes species in the northeastern United States, representing eight genera in six legume tribes. A PCR screen with two primer pairs in the rRNA region indicated that seven of the legume species were exclusively associated with strains having markers resembling Bradyrhizobium elkanii, while the remaining six host species harbored strains related to both B. elkanii and Bradyrhizobium japonicum. Sequence analysis of 22 isolates for portions of 16S rRNA and 23S rRNA yielded congruent phylogenetic trees and showed that isolates from different legume genera often shared similar or identical sequences. However, trees inferred from portions of two other genes (alpha-ketoglutarate dioxygenase gene (tfdA), the alpha-subunit of nitrogenase (nifD)) differed significantly from the rRNA phylogeny. Thus, for Bradyrhizobium populations in this region, lateral gene transfer events appear to have altered genealogical relationships of different portions of the genome. These results extend the number of likely cases of gene transfer between divergent taxa of Bradyrhizobium (from members of the B. elkanii lineage to the B. japonicum group) and suggest that transfers have also occurred among separate subgroups of the B. elkanii lineage.  相似文献   

13.
The first studies of the 16S rRNA gene diversity of the bacterial symbionts found in lucinid clams did not clarify how symbiotic associations had evolved in this group. Indeed, although species-specific associations deriving from a putative ancestral symbiotic association have been described (coevolution scenario), associations between the same bacterial species and various host species (opportunistic scenario) have also been described. Here, we carried out a comparative molecular analysis of hosts, based on 18S and 28S rRNA gene sequences, and of symbionts, based on 16S rRNA gene sequences, to determine as to which evolutionary scenario led to modern lucinid/symbiont associations. For all sequences analyzed, we found only three bacterial symbiont species, two of which are harbored by lucinids colonizing mangrove swamps. The last symbiont is the most common and was found to be independent of biotope or depth. Another interesting feature is the similarity of ctenidial organization of lucinids from the Philippines to those described previously, with the exception that two bacterial morphotypes were observed in two different species (Gloverina rectangularis and Myrtea flabelliformis). Thus, there is apparently no specific association between Lucinidae and their symbionts, the association taking place according to which bacterial species is present in the environment.  相似文献   

14.
Discordant phylogenies within the rrn loci of Rhizobia   总被引:9,自引:0,他引:9       下载免费PDF全文
It is evident from complete genome sequencing results that lateral gene transfer and recombination are essential components in the evolutionary process of bacterial genomes. Since this has important implications for bacterial systematics, the primary objective of this study was to compare estimated evolutionary relationships among a representative set of alpha-Proteobacteria by sequencing analysis of three loci within their rrn operons. Tree topologies generated with 16S rRNA gene sequences were significantly different from corresponding trees assembled with 23S rRNA gene and internally transcribed space region sequences. Besides the incongruence in tree topologies, evidence that distinct segments along the 16S rRNA gene sequences of bacteria currently classified within the genera Bradyrhizobium, Mesorhizobium and Sinorhizobium have a reticulate evolutionary history was also obtained. Our data have important implications for bacterial taxonomy, because currently most taxonomic decisions are based on comparative 16S rRNA gene sequence analysis. Since phylogenetic placement based on 16S rRNA gene sequence divergence perhaps is questionable, we suggest that the proposals of bacterial nomenclature or changes in their taxonomy that have been made may not necessarily be warranted. Accordingly, a more conservative approach should be taken in the future, in which taxonomic decisions are based on the analysis of a wider variety of loci and comparative analytical methods are used to estimate phylogenetic relationships among the genomes under consideration.  相似文献   

15.
16.
We studied the effect of ectomycorrhizal fungi on bacterial communities colonizing roots of Douglas fir (Pseudotsuga menziesii). Mycorrhizal tips were cleaned of soil and separated based on gross morphological characteristics. Sequencing of the internal transcribed spacers of the nuclear rRNA gene cluster indicated that the majority of the tips were colonized by fungi in the Russulaceae, with the genera Russula and Lactarius comprising 70% of the tips. Because coamplification of organellar 16S rRNA genes can interfere with bacterial community analysis of root tips, we developed and tested a new primer pair that permits amplification of bacterial 16S rRNA genes but discriminates more effectively against organellar sequences than commonly used bacterial primer sets. We then used terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of the 16S rRNA gene to examine differences in bacterial communities associated with the mycorrhizal tips. Cluster analysis of T-RFLP profiles indicated that there were different bacterial communities among the root tips; however, the communities did not seem to be affected by the taxonomic identity of the ectomycorrhizal fungi. Terminal restriction fragment profiling and sequencing of cloned partial 16S rRNA genes indicated that most bacteria on the ectomycorrhizal tips were related to the Alphaproteobacteria and the Bacteroidetes group.  相似文献   

17.
Parker MA 《Molecular ecology》2003,12(9):2447-2455
Assays with seven sets of lineage-specific polymerase chain reaction (PCR) primers in the ribosomal RNA region were performed on 96 isolates of the Bradyrhizobium sp. nodule bacteria from Barro Colorado Island, Panama. The isolates were derived from 10 legume host species in six genera (Centrosema, Desmodium, Dioclea, Inga, Machaerium and Vigna). The PCR assays differentiated 13 composite genotypes, and sequencing of a 5' 23S rRNA region indicated that all but one had a unique sequence. The most common genotype (seen in 44% of the isolates) was associated with all six legume host genera, and had a marker profile and 5' 23S rRNA sequence identical to a Bradyrhizobium lineage associated with several other legume genera in Panama and Costa Rica. Another 46% of the isolates had genotypes found to be associated with two to three legume genera. Bradyrhizobium strains with low host specificity thus appear to be prevalent in this tropical forest. Based on 16S rRNA and 5' 23S rRNA markers, most of the isolates had clear affinities to either B. japonicum or B. elkanii. However, one strain (Cp5-3) with a B. elkanii-type 16S rRNA marker had a 5' 23S rRNA region resembling B. japonicum. A partition homogeneity test indicated that relationships of strain Cp5-3 were significantly discordant for 16S rRNA vs. 23S rRNA sequences, and a runs test detected significant mosaic structure across the rRNA region. Lateral gene transfer events have therefore played a role in the evolution of symbiotic bacteria in this environment.  相似文献   

18.
Aim: To determine the microbial composition of biofilms in domestic toilets by molecular means. Methods and Results: Genomic DNA was extracted from six biofilm samples originating from households around Düsseldorf, Germany. While no archaeal 16S rRNA or fungal ITS genes were detected by PCR, fingerprinting of bacterial 16S rRNA genes revealed a diverse community in all samples. These communities also differed considerably between the six biofilms. Using the Ribosomal Database Project (RDP) classifier tool, 275 cloned 16S rRNA gene sequences were assigned to 11 bacterial phyla and 104 bacterial genera. Only 15 genera (representing 121 sequences affiliated with Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes and Proteobacteria) occurred in at least half of the samples or contributed at least 10% of the sequences in a single biofilm. These sequences were defined as ‘typical’ for toilet biofilms, and they were examined in more detail. On a 97% sequence similarity level, these sequences represented 56 species. Twelve of these were closely related to well‐described bacterial species, and only two of them were categorized as belonging to risk group 2. No 16S rRNA genes of typical faecal bacteria were detected in any sample. Virtually all ‘typical’ clones were found to be closely related to bacteria or to sequences obtained from environmental sources, implicating that the flushing water is the main source of recruitment. Conclusion: In view of the great diversity of mostly yet‐uncultured bacteria and the considerable differences between individual toilets, very general strategies appear to be most suited for the removal and prevention of toilet biofilms. Significance and Impact of the Study: For the first time, a molecular fingerprinting and cloning approach was used to monitor the species composition in biofilm samples taken from domestic toilets. Knowledge about the microbial composition of biofilms in domestic toilets is a prerequisite for developing and evaluating strategies for their removal and prevention.  相似文献   

19.
rpoB sequence analysis as a novel basis for bacterial identification   总被引:12,自引:0,他引:12  
Comparison of the sequences of conserved genes, most commonly those encoding 16S rRNA, is used for bacterial genotypic identification. Among some taxa, such as the Enterobacteriaceae, variation within this gene does not allow confident species identification. We investigated the usefulness of RNA polymerase beta-subunit encoding gene ( rpoB  ) sequences as an alternative tool for universal bacterial genotypic identification. We generated a database of partial rpoB for 14 Enterobacteriaceae species and then assessed the intra- and interspecies divergence between the rpoB and the 16S rRNA genes by pairwise comparisons. We found that levels of divergence between the rpoB sequences of different strains were markedly higher than those between their 16S rRNA genes. This higher discriminatory power was further confirmed by assigning 20 blindly selected clinical isolates to the correct enteric species on the basis of rpoB sequence comparison. Comparison of rpoB sequences from Enterobacteriaceae was also used as the basis for their phylogenetic analysis and demonstrated the genus Klebsiella to be polyphyletic. The trees obtained with rpoB were more compatible with the currently accepted classification of Enterobacteriaceae than those obtained with 16S rRNA. These data indicate that rpoB is a powerful identification tool, which may be useful for universal bacterial identification.  相似文献   

20.
Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号