首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Telomeric DNA-binding proteins (TBPs) are crucial components that regulate the structure and function of eukaryotic telomeres and are evolutionarily conserved. We have identified two homologues of AtTBP1 (for Arabidopsis thaliana telomeric DNA binding protein 1), designated as AtTBP2 and AtTRP2, which encode proteins that specifically bind to the telomeric DNA of this plant. These proteins show extensive homology with other known plant TBPs. The isolated C-terminal segments of these proteins were capable of sequence-specific binding to duplex telomeric plant DNA in vitro. DNA bending assays using the Arabidopsis TBPs revealed that AtTBP1 and AtTBP2 have DNA-bending abilities comparable to that of the human homologue hTRF1, and higher than those of AtTRP1 and AtTRP2.  相似文献   

2.
DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.  相似文献   

3.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

4.
The recent structure determination of RuvA has provided the first insights into the structural basis for its interaction with Holliday junction DNA. Multiple copies of a helix-hairpin-helix motif which line the four grooves between the monomers in the tetrameric structure are thought to be involved in the interaction of the protein with its DNA target. This suggests that the four arms of the junction are held by RuvA in a fourfold symmetric arrangement and has fuelled ideas on the way in which components of the Ruv complex combine to catalyse the process of homologous recombination  相似文献   

5.
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.  相似文献   

6.
DNA vaccination has proved to be a generally applicable technology in various preclinical animal models of infectious and noninfectious disease and several DNA vaccines have now entered phase I human clinical trials. It is too early to predict the effectiveness of DNA vaccines in humans and whether improved formulations of DNA vaccines will be required but several lines of investigation have suggested ways in which DNA vaccines may be improved, such as increases in expession, facilitation of DNA targeting or uptake, and enhancement of immune responses.  相似文献   

7.
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains.  相似文献   

8.
The past year has confirmed the great potential of the yeast Saccharomyces cerevisiae as a model to study aging. Ground breaking papers have revealed similarities between aging in yeast and in mammals, and have identified genetic instability of the ribosomal DNA array as the first known cause of aging in yeast cells.  相似文献   

9.
The recent crystal structure determination of T7 DNA polymerase complexed to a deoxynucleoside triphosphate and primer—template DNA has provided the first glimpse of a replicative DNA polymerase in a catalytic complex. The structure complements many functional and structural studies of this and other DNA polymerases, allowing a detailed evaluation of proposals for the mechanism of nucleotidyl transfer and the exploration of the basis for the high fidelity of template-directed DNA synthesis.  相似文献   

10.
DNA sequence data are generally interpreted as favouring Kimura's neutral theory but not without dissent and often with a great deal of controversy with respect to molecular clocks, DNA polymorphism, adaptive evolution, and gene genealogy. Although the theory serves as a guiding principle, many issues concerning mutation, recombination, and selection remain unsettled. Of particular importance is the need for more knowledge about the function and structure of molecules.  相似文献   

11.
Genetic diversity patterns in nuclear versus mitochondrial systems and in low versus high mutation rate systems do not support the hypothesis of a recent African origin for all of humanity following a split between Africans and non-Africans 100,000 years ago, nor do genetic distance data. Geographical analyses of nuclear and mitochondrial gene trees do not support the hypothesis of a recent global replacement of humans coming out of Africa, although a local replacement event in Europe is indicated by these analyses and recent studies on Neandertal DNA. The gene tree analyses instead indicate that genetic interchanges have ensured that all of humanity has evolved as a single evolutionary lineage with no major splits.  相似文献   

12.
13.
The p53 tumor suppressor gene is a logical target for cancer therapy. Several therapeutic strategies can be envisioned based upon recent advances concerning structure and function of the p53 protein, its interaction with cellular and viral proteins and its roles in repairing DNA, regulating cell division and promoting apoptosis.  相似文献   

14.
Cytokinesis is under active investigation in each of the dominant experimental model systems. During 1996 and 1997, several developments necessitated the reassessment of the prevailing model for cytokinesis. In addition, the inventory of proteins required for cytokinesis has grown considerably. However, a molecular understanding of cytokinesis still remains elusive.  相似文献   

15.
Infection-related development in the rice blast fungus Magnaporthe grisea   总被引:8,自引:0,他引:8  
Recent developments have been made in the identification of signal transduction pathways and gene products involved in the infection-related development of the rice blast fungus, Magnaporthe grisea. It has been established that cAMP-dependent and MAP kinase-mediated signaling are both critical for appressorium morphogenesis and function. These signaling pathways may act downstream of hydrophobin-mediated surface sensing by the growing germ tube. Several genes have been identified that are required for invasive growth of M. grisea including genes that allow adaptation of fungal metabolism to growth within plant tissues.  相似文献   

16.
17.
Flexibility and dynamics of DNA are important for DNA-binding and recognition by proteins. Here the flexibility of DNA is calculated from the distribution of DNA-bending angles of single DNA molecules as observed by scanning force microscopy by applying an equation that links the force constant of DNA-bending (f) to the variance of the distribution of bending angles (sigma): f=RT/sigma(2). Using published data, f is calculated to be 3-5 J/degree(2) for free DNA. Thus, bending DNA by 20 degrees requires approx. 0.5-1 kJ/mol. This result shows that DNA is very flexible and readily can be bent by thermal motion. DNA-flexibility is not altered in some protein-DNA complexes (HhaI methyltransferase, EcoRV restriction endonuclease). In contrast, DNA-binding by EcoRI endonuclease increases DNA-flexibility and binding by EcoRI methyltransferase restricts the flexibility of DNA. During the transition of the RNA polymerase-sigma(54)-DNA complex from the closed to the open form and of cro repressor from a non-specific to a specific binding mode the flexibility of the DNA is strongly reduced.  相似文献   

18.
Telomeres are guanine-rich regions that are located at the ends of chromosomes and are essential for preventing aberrant recombination and protecting against exonucleolytic DNA degradation. Telomeres are maintained by telomerase, an RNA-dependent DNA polymerase. Because telomerase is known to be expressed in tumor cells, which concurrently have short telomeres, and not in most somatic cells, which usually have long telomeres, telomerase and telomere structures have been recently proposed as attractive targets for the discovery of new anticancer agents. The most exciting current strategies are aimed at specifically designing new drugs that target telomerase or telomeres and new models have been formulated to study the biological effects of inhibitors of telomerase and telomeres both in vitro and in vivo.  相似文献   

19.
Recent research has focused on proteins important for early steps in replication in eukaryotes, and particularly on Cdc6/Cdc18, the MCMs, and Cdc45. Although it is still unclear exactly what role these proteins play, it is possible that they are analogous to initiation proteins in prokaryotes. One specific model is that MCMs form a hexameric helicase at replication forks, and Cdc6/Cdc18 acts as a ‘clamp-loader’ required to lock the MCMs around DNA. The MCMs appear to be the target of Cdc7-Dbf4 kinase acting at individual replication origins. Finally, Cdc45 interacts with MCMs and may shed light on how cyclin-dependent kinases activate DNA replication.  相似文献   

20.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号