首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Genetics has played only a modest role in drug discovery, but new technologies will radically change this. Whole genome sequencing will identify new drug discovery targets, and emerging methods for the determination of gene function will increase the ability to select robust targets. Detection of single nucleotide polymorphisms and common polymorphisms will enhance the investigation of polygenic diseases and the use of genetics in drug development. Oligonucleotide arraying technologies will allow analysis of gene expression patterns in novel ways.  相似文献   

2.
Over the next decade, the impact of library synthesis will play a major role in shortening the lead optimization phase of drug discovery. The prognosis for combinatorial chemistry to discover fundamentally different new classes of therapeutically active small molecules against some of the more difficult biological targets is less certain. Expectations are high because the technology potentially allows us to sample available drug space by synthesizing all possible small molecule ligands (variously estimated to be between 1030–1050 compounds). Some caution is advised, however, since, despite recent increases in high-throughput screening of substantially greater numbers of synthetic compounds and natural products, we are not routinely finding a plethora of new structures. The outcome may be that combinatorial chemistry offers us the ability to work faster on finding ligands for well-established tractable targets, such as G-protein-coupled receptors, ion channels or proteases, rather than, say, the more complex protein—protein interactions which from the majority of targets in signal transduction pathways.  相似文献   

3.
A significant difficulty faced by the pharmaceutical industry is the initial identification and selection of macromolecular targets upon which de novo drug discovery programs can be initiated. A drug target should have several characteristics: known biological function; robust assay systems for in vitro characterization and high-throughput screening; and be specifically modified by and accessible to small molecular weight compounds in vivo. Ion channels have many of these attributes and can be viewed as suitable targets for small molecule drugs. Potassium (K+) ion channels form a large and diverse gene family responsible for critical functions in numerous cell types, tissues and organs. Recent discoveries, facilitated by genomics technologies combined with advanced biophysical characterization methods, have identified novel K+ channels that are involved in important physiologic processes, or mutated in human inherited disease. These findings, coupled with a rapidly growing body of information regarding modulatory channel subunits and high resolution channel structures, are providing the critical information necessary for validation of K+ channels as drug targets.  相似文献   

4.
Recently, molecular biologists have sequenced about a dozen bacterial genomes and the first eukaryotic genome. We can now obtain answers to detailed questions about the complete set of genes of an organism. Bioinformatics methods are increasingly used for attaching biological knowledge to long lists of genes, assigning genes to biological pathways, comparing the gene sets of different species, identifying specificity factors, and describing sets of highly conserved proteins common to all domains of life. Substantial progress has recently been made in the availability of primary and added-value databases, in the development of algorithms and of network information services for genome analysis. The pharmaceutical industry has greatly benefited from the accumulation of sequence data through the identification of targets and candidates for the development of drugs, vaccines, diagnostic markers and therapeutic proteins.  相似文献   

5.
Trypanosoma brucei and Trypanosoma cruzi cause different human diseases. As strategies for immune evasion. T. brucei undergoes antigenic variation whereas T. cruzi becomes an intracellular organism. This fundamental difference is reflected by major differences in their genome organizations. Recent comparisons of their gene sequences indicate that these two trypanosome species are highly divergent evolutionarily.  相似文献   

6.
The rapidly changing developments in genomics and combinatorial chemistry, generating new drug targets and large numbers of compounds, have caused a revolution in high-throughput screening technologies. Key to this revolution has been the introduction of robotics and automation, together with new biological assay technologies (e.g., homogeneous time resolved fluorescence). With ever increasing workloads, together with economic and logistical constraints, miniaturisation is rapidly becoming essential for the future of high-throughput screening and combinatorial chemistry. This is evident from the introduction of high-density microtitre plates, small volume liquid handling robots and associated detection technology.  相似文献   

7.
Recently, two structures of the Ser/Thr phosphorylase calcineurin in complex with FK506 and its cognate immunophilin, FKBP12, have been reported, both solved by small pharmaceutical companies focused on structure-based drug design. A realization, however, that the toxicities associated with calcineurin-mediated immunosuppressants might be mechanism based has driven the current interest in alternative approaches to autoimmunity prophylaxis and preventing transplant rejection. Regulatory approval in 1995 of the immunosuppressant prodrug mycophenolate mofetil, whose active metabolite, mycophenolic acid, inhibits inosine monophosphate dehydrogenase, has focused attention on the potential significance of the de novo purine-biosynthesis pathway as a target for immunosuppressive drugs, leading ultimately to the solution of enzyme structure as a drug design target. As this and other clinically relevant targets are discovered, elaborated and refined via the activity of their cognate agents (as was the case for the phosphatase calcineurin via the activity of cyclosporin), a critical opportunity should ensue for structural biology to exert a profound effect on the future development of these therapies.  相似文献   

8.
The giant vesicle is becoming an object of intense scrutiny by chemists, biologists, and physicists who are interested in membrane behavior. Recent advances include new models to explain morphological changes, new experimental methods for studying vesicle adhesion, layering and adsorption, and new cataloging of ‘cytomimetic’ processes.  相似文献   

9.
Cell biology depends on the interactions of macromolecules, such as protein—DNA, protein—protein or protein—nucleotide interactions. GTP-binding proteins are no exception to the rule. They regulate cellular processes as diverse as protein biosynthesis and intracellular membrane trafficking. Recently, a large number of genes encoding GTP-binding proteins and the proteins that interact witht these molecular switches have been cloned and expressed. The 3D structures of some of these have also been elucidated  相似文献   

10.
Two recent large-scale genetic screens in zebrafish have identified many mutations that affect differentiation in a variety of organ systems, particularly the notochord, the neural crest and the blood. The combination of these newly identified mutations and well established embryological methods makes zebrafish uniquely suited among vertebrate experimental systems to simultaneously address the roles of specific genes and specific cell—cell interactions during differentiation.  相似文献   

11.
The availability of bacterial genome sequence information has opened up many new strategies for antibacterial drug hunting. There are obvious benefits for the idetification and evaluation of new drug targets, but genomic-based technology is also beginning to provide new tools for the downstream, preclinical, optimisation of compounds. The greatest benefit from these new approaches lies in the ability to examine the entire genome (or several genomes) simultaneously and in total. In this way, one potential target can be evaluated against another, and either the total effects of functional impairment can be established or the effects of a compound can be compared across species.  相似文献   

12.
Germline stem cells (GSCs) are a self-renewing population of germ cells that serve as the source of gametes in diverse organisms. Current research suggests that the self-renewing division of GSCs is controlled both by somatic signaling and by intracellular mechanisms such as differential gene expression, asymmetric cytoskeletal organization, and the cell cycle machinery. These findings provide a framework for the further study of GSCs and stem cell renewal in general.  相似文献   

13.
The retinoblastoma protein and p53 are both cell-cycle regulators and are, directly or indirectly, inactivated in the majority of human tumors. Recent studies have provided new mechanistic insights into how these proteins regulate cell growth in response to various intracellular and extracellular signals.  相似文献   

14.
The ultradian rhythm of the lateral leaflets ofDesmodium motorium}(Houtt.) Merril. was recorded with a picture analysis method using a video camera and a computer. The periods are in the minute range and depend strongly on temperature. The phosphatidyl inositol signal chain might be involved in the ultradian rhythm of the lateral leaflet movement of Desmodium motorium:Myoinositol shortens the period length and reduces the known period lengthening effect of lithium ions. Neomycin, which inhibits the hydrolysis of phosphatidylinositol-4,5 -biphosphate to inositol-4-phosphate and diacylglycerin, lengthens the period of the rhythm at low concentrations (0.2 mM). Higher concentrations shorten the period, perhaps by activating G protein. Mastoparan, which activates G protein, shortens period likewise. The G protein agonists fluorid ion and ethanol are toxic for the lateral leaflets and could therefore not be used to test the involvement of G protein. The intracellular Ca 2+ antagonist 3,4,5-trinietlioxybeiizoic acid 8-(diethylamino)octylester lengthens the period of the rhythm. This indicates, that release of Cas 2+ from intracellular stores is important for the lateral leaflet movement rhythm.  相似文献   

15.
Interferon-(IFN-γ) has been considered to be a critical protective immunomodulatory component against Mycobacterium tuberculosis (M. tb.) infection. In this study T-cell proliferation and IFN-γ production upon stimulation with M. tb. were assessed in patients of pulmonary tuberculosis and healthy contacts. The studies were based on lymphocyte transformation test and detection of intracellular IFN-γ production by CD4 + ve T-cells by flowcytometry. Patients showed lower levels of proliferation, the stimulation index being in the range of 2.17 1.1 (mean + SD) compared to the contacts (SI = 4 59±1.6) (P < 0.01). The kinetics of intracellular induction of IFN-γ on M. tb. stimulation showed a proportional increase in the CD4 + ve T-cell population. The increase was maximal between 96–120 h of culture. In healthy contacts the number of IFN-γ expressing CD + ve T-cells increased to 2.5 to 41 × 104 cells/ml in M. tb. stimulated cultures compared to control cultures (0.1 – 15 × 104). In contrast patients showed no/marginal increase in CD4 + ve T-cell population expressing intracellular IFN-γ Thus the lack of induction of IFN in CD4 + ve T-cells in patients could be a critical shortcoming in their ability to combat tubercle bacilli infection.  相似文献   

16.
Improvements in homology search methodology and functional predictions are being complemented by the increase in the volume of sequence data with which comparative analyses can be performed. The experimental methods needed for investigation of gene function and expression in a variety of model systems of infection continue to develop. The identification of surface-exposed microbial structures and their conservation in natural populations of pathogenic species offers prospects for developing novel vaccines. A major challenge is the development of efficient screening methods to select the most promising candidates, such as immunisation with DNA.  相似文献   

17.
Motoneurons have distinct identities and muscle targets. Recent classical and molecular genetic studies in flies and vertebrates have begun to elucidate how motoneuron identities and target specificities are established. Many of the same molecules participate in the guidance of both vertebrate and fly motor axons. It is less clear, however, whether the same molecular mechanisms establish vertebrate and fly motoneuron identities.  相似文献   

18.
Increasing antibiotic resistance in microorganisms and new emerging pathogens have become a major problem in our society. Rising to satisfy this urgent medical need is a recent confluence of powerful new drug discovery technologies: combinatorial chemistry; sequence and functional genomic analysis; and novel methods of high-throughput screening. The combination of these technologies will bring to bear untapped power in the search for new antimicrobials.  相似文献   

19.
The discovery of a diverse and unique subset of ion channels in T lymphocytes has led to a rapidly growing body of knowledge about their functional roles in the immune system. Potent and specific blockers have provided molecules tools to probe channel structure—function relations and to elucidate the involvement of K+, Ca2+, and Cl channels in T-cell activation and cell volume regulation. Recent advances in analyzing Kv1.3 channel structure—function relationships have defined binding sites for channel blockers, which have now been shown to be effective in suppressing T-cell function in vivo. Ion channels may provide excellent pharmaceutical targets for modulating immune system function.  相似文献   

20.
Structural analysis has been successfully implemented recently to obtain valuable information on the mycobacterial cell wall components, many of which have formed the basis for biosynthesis and functional studies towards developing better drugs and possible vaccines. The highly complex and well organized structure unique to mycobacteria, represents the best target for novel antimycobacterial agents. Until recently, our knowledge of the enzymes responsible for the biogenesis of the cell wall components was almost negligible. The pathways are now being elucidated in several laboratories. Highlights of this review include significant advances in the structure and biochemistry of the major cell wall components and potenital targets for generation of new drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号