首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Cadmium (Cd) concentrations in durum wheat (Triticum turgidum L. var durum) grain grown in North American prairie soils often exceed proposed international trade standards. To understand the physiological processes responsible for elevated Cd accumulation in shoots and grain, Cd uptake and translocation were studied in seedlings of a pair of near-isogenic durum wheat lines, high and low for Cd accumulation in grain.  相似文献   

2.
Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non‐functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380th position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root‐to‐shoot Cd translocation and a shift in root Cd speciation from Cd―S to Cd―O bonding determined by synchrotron X‐ray absorption spectroscopy. Our study has identified a new loss‐of‐function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain.  相似文献   

3.
A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23–0.28 mg kg?1, almost down to the standard limit (0.2 mg kg?1). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.  相似文献   

4.
Evidence exists that Cd and certain nutrient elements, such as Fe and Mg, could share similar mechanisms of plant uptake and accumulation. Here we report that Mg and Fe deficiency in mature plants of Salix viminalis, grown in hydroponic solutions containing 5 µg ml?1 of Cd, caused a significant increase in Cd accumulation in roots, stems and leaves. Cd (µg g?1 dry weight) was determined following three treatments: 1) Cd treatment in complete nutrient solution; 2) Cd treatment with Fe deficiency; and 3) Cd treatment with Mg deficiency, yielding, respectively: in young leaves (65.3, 76.1, and 92.2), mature leaves (51.5 to 76.3 and 87.1), upper stems (80.6, 116.8, and 130.6) lower stems (67.2, 119, and 102.3), roots (377.1, 744.8, and 442,5). Our results suggest that Cd utilizes the same uptake and transport pathways as Mg and Fe. Evidence exists that Mg and Fe uptake and translocation could be further facilitated by plants as an adaptive response to deficiency of these elements. Such physiological reaction could additionally stimulate Cd accumulation. Although Cd uptake was mostly confined in roots, high Cd content in aerial plant parts (51.5–130.6 µg g?1) indicates that the analysed Salix viminalis genotype is suitable for phytoextraction.  相似文献   

5.

Aims

The current study aimed to assess the potential of peanut (Arachis hypogaea L.) for bioenergy production via phytoextraction in cadmium (Cd) -contaminated soils and screen appropriate cultivars for this approach.

Methods

A life-cycle pot experiment was conducted to determine the biomass, seed yield, oil content and Cd accumulation of seven peanut cultivars under Cd concentration gradients of 0, 2, and 4 mg kg?1.

Results

Peanut exhibits genotypic variations in Cd tolerance, seed production, oil content, and Cd accumulation. Exposure of plants to 2 and 4 mg kg?1 Cd did not inhibit shoot biomass, seed yield, and oil content for most of the cultivars tested. There are large amounts of Cd accumulated in the shoots. Although the seed Cd concentration of peanut was relatively high, the Cd concentration in seed oils was very low (0.04-0.08 mg kg?1). Among the cultivars, Qishan 208 showed significant Cd tolerance, high shoot biomass, high pod and seed yield, high seed oil content, considerable shoot Cd concentration, and the largest translocation factor and total Cd in shoots.

Conclusions

The cultivation of peanut in Cd-contaminated farmland was confirmed to be feasible for bioenergy production via phytoextraction, and Qishan 208 is a good candidate for this approach.  相似文献   

6.
Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance‐Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.  相似文献   

7.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

8.
The variations of Cd accumulation in three rootstalk crop species (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Cd treatments (0.3 and 0.6 mg kg?1) in a pot experiment. The result showed that the total Cd uptake was significantly affected by genotype, soil type and interaction between them, suggesting the importance of selecting proper cultivars for phytoextraction in a given soil type. Among the cultivars tested, potato cultivar Luyin No.1 in Ferralsols and radish cultivar Zhedachang in Cambisols exhibited the highest Cd phytoextraction efficiency in aerial parts (4.45% and 0.59%, respectively) under 0.6 mg kg?1Cd treatment. Furthermore, the Cd concentrations in their edible parts were below the National Food Hygiene Standard of China (0.1 mg kg?1, fresh weight). Therefore, phytomanagement of slightly Cd-contaminated soils using rootstalk crops for safe food production combined with long-term phytoextraction was feasible, and potato cultivar Luyin No.1 for Ferralsols and radish cultivar Zhedachang for Cambisols were promising candidates for this approach.  相似文献   

9.
Abstract

In the framework of a phytoremediation project in the Apulia region (Italy) a field experiment was carried out in multi-metal contaminated soils. The accumulation and distribution of metals in different plant parts of durum wheat and barley were studied. Further, the application of Bacillus licheniformis strain BLMB1 to soil was evaluated as a means to enhance metal accumulation in plants. The translocation and the bioconcentration factors indicated that wheat and barley do not act as metal accumulators in the field conditions tested, thus phytoextraction by these species would not be recommended as a soil remediation alternative. Application of B. licheniformis improved the accumulation of all metals in roots of wheat and barley, and increased Cd, Cr, and Pb contents in the shoots of barley. Low health risk for humans and animals was evaluated to exist if straw and grain from both cereal crops grown in these contaminated sites are consumed.  相似文献   

10.
水稻籽粒铁(Fe)缺乏和镉(Cd)含量超标是农业生产亟待解决的重要问题。以往研究表明,OsVIT1和OsVIT2是液泡铁转运蛋白,本研究选取野生型ZH11为背景材料,使用胚乳特异性表达启动子Glb-1构建了胚乳过表达OsVIT1和OsVIT2材料。RT-qPCR分析表明,OsVIT1在转化植株的胚乳和叶片过量表达,OsVIT2在转化植株的胚乳过量表达。通过田间试验,研究胚乳过表达OsVIT1和OsVIT2对水稻不同部位Fe和Cd积累的影响。结果表明,胚乳过表达OsVIT1显著降低籽粒中的Fe浓度约50%,显著增加秸秆的锌(Zn)、铜(Cu)浓度和籽粒中的Cu浓度,胚乳过表达OsVIT2显著降低籽粒中的Fe、Cd浓度约50%,显著增加秸秆的Fe浓度45%–120%。胚乳过表达OsVIT1和OsVIT2不影响水稻的农艺性状。总之,胚乳过表达OsVIT1和OsVIT2降低了水稻籽粒的Fe积累,未达到预期效果,胚乳过表达OsVIT2还降低籽粒的Cd积累,增加秸秆Fe积累,为水稻铁生物强化和降镉提供了借鉴。  相似文献   

11.

Aims

This study aimed to screen and identify low-cadmium (Cd) hot pepper (Capsicum annuum L.) cultivars and to clarify the mechanisms of low Cd accumulation in fruits.

Methods

A pot experiment was conducted to investigate the variations of fruit Cd concentration among 30 hot pepper cultivars and to determine the differences in uptake and translocation of Cd between low- and high-Cd cultivars in the control and two Cd treatments.

Results

There are significant differences among the cultivars in their ability to accumulate Cd in fruits. Fruit Cd concentrations are positively and significantly correlated with the translocation of Cd from roots to aboveground parts and the Cd concentrations of leaves and stems. However, no correlation was observed between the fruit’s Cd concentration and the root’s Cd uptake ability.

Conclusions

Two hot pepper cultivars, Yeshengchaotianjiao (No. 16) and Heilameixiaojianjiao (No. 23), were identified as low-Cd cultivars, and two, Jinfuzaohuangjiao (No. 13) and Shuduhong (No. 18), were treated as high-Cd cultivars. The difference in fruit Cd concentrations between low- and high-Cd cultivars is attributable to the difference in Cd translocation from roots to aboveground parts and from leaves and stems to fruits, rather than to the root’s Cd uptake ability.  相似文献   

12.
Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknown. The objectives of this study were to saturate the chromosomal region harboring Cdu1 with newly developed PCR-based markers and to investigate the colinearity of this wheat chromosomal region with rice (Oryza sativa L.) and Brachypodium distachyon genomes. Genetic mapping of markers linked to Cdu1 in a population of recombinant inbred substitution lines revealed that the gene(s) associated with variation in Cd concentration resides in wheat bin 5BL9 between fraction breakpoints 0.76 and 0.79. Genetic mapping and quantitative trait locus (QTL) analysis of grain Cd concentration was performed in 155 doubled haploid lines from the cross W9262-260D3 (low Cd) by Kofa (high Cd) revealed two expressed sequence tag markers (ESMs) and one sequence tagged site (STS) marker that co-segregated with Cdu1 and explained >80% of the phenotypic variation in grain Cd concentration. A second, minor QTL for grain Cd concentration was also identified on 5B, 67 cM proximal to Cdu1. The Cdu1 interval spans 286 kbp of rice chromosome 3 and 282 kbp of Brachypodium chromosome 1. The markers and rice and Brachypodium colinearity described here represent tools that will assist in the positional cloning of Cdu1 and can be used to select for low Cd accumulation in durum wheat breeding programs targeting this trait. The isolation of Cdu1 will further our knowledge of Cd accumulation in cereals as well as metal accumulation in general.  相似文献   

13.
Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg–1 and 43.1, 482, 812 mg Zn kg–1 respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ~5.5–7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use.

Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg–1 on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg–1 with only mild phytotoxicity symptoms during early growth at pH > 6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg–1 in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg–1 after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably.

Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.  相似文献   


14.
We characterized the absorption and short-term translocation of cadmium (Cd) in rice (Oryza sativa ‘Nipponbare’) quantitatively using serial images observed with a positron-emitting tracer imaging system. We fed a positron-emitting 107Cd (half-life of 6.5 h) tracer to the hydroponic culture solution and noninvasively obtained serial images of Cd distribution in intact rice plants at the vegetative stage and at the grain-filling stage every 4 min for 36 h. The rates of absorption of Cd by the root were proportional to Cd concentrations in the culture solution within the tested range of 0.05 to 100 nm. It was estimated that the radial transport from the culture to the xylem in the root tissue was completed in less than 10 min. Cd moved up through the shoot organs with velocities of a few centimeters per hour at both stages, which was obviously slower than the bulk flow in the xylem. Finally, Cd arrived at the panicles 7 h after feeding and accumulated there constantly, although no Cd was observed in the leaf blades within the initial 36 h. The nodes exhibited the most intensive Cd accumulation in the shoot at both stages, and Cd transport from the basal nodes to crown root tips was observed at the vegetative stage. We conclude that the nodes are the central organ where xylem-to-phloem transfer takes place and play a pivotal role in the half-day travel of Cd from the soil to the grains at the grain-filling stage.Contamination of arable soil with cadmium (Cd) is one of the most serious agricultural problems in the world. Crops, particularly irrigated rice (Oryza sativa), are generally suggested as the main source of Cd intake by humans (United Nations Environment Programme, 2008). From the viewpoint of plant nutrition, the dynamics and mechanisms of Cd transition from the soil to the edible parts in the plants should be elucidated.Generally, the process of metal accumulation in plants mainly consists of uptake from the soil by the roots, xylem loading and transport, and distribution between metal sinks in the aerial parts (Clemens et al., 2002). It has been demonstrated that xylem loading and transport but not absorption by the roots is one of the rate-controlling steps for Cd accumulation in the grain of graminaceous plants. Hart et al. (1998) reported that greater Cd accumulation in durum wheat grain than in bread wheat grain was not correlated with the root influx rates of these cultivars. Harris and Taylor (2004) employed two near-isogenic lines of durum wheat that differ in grain Cd accumulation and showed that elevated activity of root-to-shoot transport of Cd was responsible for the higher accumulation of Cd in grain, but Cd uptake by roots was not. Uraguchi et al. (2009) analyzed two rice cultivars that show different levels of Cd accumulation in the grain and concluded that root-to-shoot Cd translocation via xylem is the major process determining the Cd accumulation level in rice grain. Phloem transport has also been considered a key step of Cd translocation to the grain, because xylem transport is directed mainly to the organs of highest transpiration, such as leaves, but not to the sites of highest demand for mineral, such as grains (Marschner, 1995). Cd was detected in the phloem sap of rice collected from leaf sheaths (Tanaka et al., 2003) and from the uppermost internode at the grain-filling stage (Tanaka et al., 2007). Tanaka et al. (2007) also estimated that 91% to 100% of Cd in rice grains is deposited from the phloem. In wheat, it has been observed in a split-root system that Cd fed to one bundle of the roots moved into the other bundle, probably via the phloem (Welch et al., 1999; Page and Feller, 2005), and steam girdling, which stops only phloem transport but not xylem flow, to the peduncle below the ear reduced Cd translocation to the grain (Riesen and Feller, 2005). These results suggest that the xylem loading and transport is the first rate-controlling step of Cd transition from the soil to the grain in graminaceous plants and the phloem transport and unloading into the grain is the last. However, the intermediate steps between the xylem and phloem transport of Cd have not been clarified. In general, it is known that mineral micronutrients are remobilized from senescent leaves to the phloem at the reproductive stage or transferred from the xylem to the phloem directly via transfer cells (Marschner, 1995; Clemens et al., 2002). Therefore, where and how the xylem-to-phloem transfer of Cd occurs is of considerable interest. The main objective of this study was to quantitatively describe the whole route and the time scale of Cd transition from the soil to the grain in rice at the vegetative and reproductive stages.In this study, we also raised a methodological challenge. We employed a positron-emitting tracer imaging system (PETIS), one of the most advanced radiotracer-based imaging methods available today. PETIS provides serial time-course images (i.e. animation) of the two-dimensional distribution of a radiotracer within a living organism without contact. Its principle is the same as that of positron emission tomography, which has been widely used for medical diagnosis, but PETIS was specially designed for studying plants and has been applied to many studies on plant nutrition over the last decade (Uchida et al., 2003; Fujimaki, 2007; Fujimaki et al., 2010). Recently, the transport of metals, including iron (Ishimaru et al., 2006, 2007; Tsukamoto et al., 2009), zinc (Suzuki et al., 2006), and manganese (Tsukamoto et al., 2006), in intact graminaceous plants has been visualized using PETIS. Furthermore, the time course of tracer amounts within any selected region of interest (ROI) on the obtained image can be easily generated and applied for mathematical analyses because PETIS provides highly quantitative images. The rates of photoassimilation and the velocities of phloem transport in intact plants under various environmental conditions have been estimated quantitatively using PETIS (Matsuhashi et al., 2005; Kawachi et al., 2006). However, to our knowledge, no study has been carried out to describe the whole dynamics and kinetics of a substance in an intact plant body by taking full advantage of PETIS, namely noninvasive visualization and quantitative time-course analysis. The second objective of this study was to demonstrate the potential of the latest radiotracer imaging technology for plant physiology.  相似文献   

15.
Arsenic (As) is a poisonous element that causes severe skin lesions and cancer in humans. Rice (Oryza sativa L.) is a major dietary source of As in humans who consume this cereal as a staple food. We hypothesized that increasing As vacuolar sequestration would inhibit its translocation into the grain and reduce the amount of As entering the food chain. We developed transgenic rice plants expressing two different vacuolar As sequestration genes, ScYCF1 and OsABCC1, under the control of the RCc3 promoter in the root cortical and internode phloem cells, along with a bacterial γ‐glutamylcysteine synthetase driven by the maize UBI promoter. The transgenic rice plants exhibited reduced root‐to‐shoot and internode‐to‐grain As translocation, resulting in a 70% reduction in As accumulation in the brown rice without jeopardizing agronomic traits. This technology could be used to reduce As intake, particularly in populations of South East Asia suffering from As toxicity and thereby improve human health.  相似文献   

16.
The heavy metal cadmium (Cd) is highly toxic to humans and can enter food chains from contaminated crop fields. Understanding the molecular mechanisms of Cd accumulation in crop species will aid production of safe Cd-free food. Here, we identified a single recessive gene that allowed higher Cd translocation in rice, and also determined the chromosomal location of the gene. The Cd hyperaccumulator rice variety Cho-Ko-Koku showed 3.5-fold greater Cd translocation than the no-accumulating variety Akita 63 under hydroponics. Analysis of an F2 population derived from these cultivars gave a 1:3 segregation ratio for high:low Cd translocation. This indicates that a single recessive gene controls the high Cd translocation phenotype. A QTL analysis identified a single QTL, qCdT7, located on chromosome 7. On a Cd-contaminated field, Cd accumulation in the F2 population showed continuous variation with considerable transgression. Three QTLs for Cd accumulation were identified and the peak of the most effective QTL mapped to the same region as qCdT7. Our data indicate that Cd translocation mediated by the gene on qCdT7 plays an important role in Cd accumulation on contaminated soil.  相似文献   

17.
Cadmium (Cd) accumulation by terrestrial higher plants is an intriguing phenomenon that may be exploited for phytoextraction of Cd-contaminated soils. Characterizing the physiological processes responsible for elevated concentrations of Cd in shoots is a first step towards a comprehensive understanding of the mechanisms underlying Cd accumulation in plants and may eventually improve the efficiency of phytoextraction. Woody species that can accumulate Cd have been recently recommended as good candidates for phytoextraction of Cd-contaminated soils. However, little is known about the mechanisms of Cd accumulation by woody species. In an attempt to understand the physiological processes contributing to Cd accumulation in woody species, Cd uptake and translocation by a novel tropical Cd-accumulating tree, star fruit (Averrhoa carambola) were characterized and compared with those of a non-Cd-accumulating tree (Clausena lansium). Our results showed that A. carambola had higher Cd uptake and root-to-shoot translocation efficiencies than C. lansium, which might account for its greater Cd-accumulating capacity. Furthermore, Cd accumulation by A. carambola was not significantly affected by zinc (Zn), whereas Zn accumulation was greatly lowered by Cd. This phenomenon could not be fully explained by a simple competition between Cd2+ and Zn2+, implying the existence of a transport system with a preference for Cd over Zn. Collectively, our results indicate that A. carambola has noteworthy physiological traits associated with accumulation of Cd to high levels.  相似文献   

18.

Background and Aims

The accumulation of cadmium and lead in rice (Oryza sativa L.) grains is a potential threat to human health. In this study, the effect of selenium fertilization on the uptake and translocation of cadmium and lead in rice plants was investigated.

Methods

Rice plants were cultivated using cadmium and lead contaminated soils with selenium addition at three concentrations (0, 0.5 and 1 mg kg?1). At maturity, plants were harvested, and element concentrations in rice tissues were analyzed by using ICP-MS.

Results

Selenium application significantly increased selenium accumulation in rice grain, and markedly decreased cadmium and lead concentrations in rice tissues. In brown rice grains, selenium application reduced cadmium concentrations by 44.4 %, but had no significant effect on lead accumulation. Selenium application significantly decreased metal mobility in soils, at 0.5 mg kg?1 treatment, the translocation factor of cadmium and lead from soil to iron plaque decreased by 71 and 33 % respectively.

Conclusions

The mechanism of selenium mitigating of heavy metal accumulation in rice could be decreasing metal bioavailability in soil. Selenium fertilization could be an effective and feasible method to enrich selenium and reduce cadmium levels in brown rice.  相似文献   

19.
Multielement-contaminated agricultural land requires the adaptation of agronomic practices to meet legal requirements for safe biomass production. The incorporation of bioenergy plants with, at least, moderate phytoextraction capacity into crop rotations with cereals can affect trace elements (TE) phytoavailability and, simultaneously, constitute economic revenues for farmers outside the food or forage sector. Hence, in a crop rotation pot study sunflower (Helianthus annuus L.), modified for high biomass and TE accumulation by chemical mutagenesis, was compared to winter oilseed rape (Brassica napus L.) as pre-crop. On two agricultural soils with different TE loads, the crops´ potential for phytoextraction and for impacts on TE uptake by subsequent winter wheat (Triticum aestivum L.) was studied. The results showed that rape tolerated high-level mixed contamination with metals (Cd, Pb and Zn) and As more than sunflower. In both soils, labile metals concentration increased and soil acidity remained high following sunflower. Furthermore, enhanced grain As accumulation in subsequent wheat was observed. By contrast, soil acidity and Cd or Zn accumulation of subsequent wheat decreased following rape. In the short term, moderate phytoextraction was superimposed by nutrient use or rhizosphere effects of pre-crops, which should be carefully monitored when designing crop rotations for contaminated land.  相似文献   

20.
Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.

The defensin family member DEFENSIN 8 (DEF8) mediates both xylem cadmium (Cd) loading and phloem Cd unloading via the chelation and secretion mechanism in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号