首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

3.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

4.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

5.
Voltage‐dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation, and the acrosome reaction (AR), all essential for fertilization. Pharmacological evidence has suggested T‐type calcium channels participate in the AR. Niflumic acid (NA), a non‐steroidal anti‐inflammatory drug commonly used as chloride channel blocker, blocks T‐currents in mouse spermatogenic cells and Cl? channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch‐clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T‐type currents with an IC50 of 73.5 µM, without major voltage‐dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T‐type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug‐channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T‐type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T‐currents, it is likely that a novel CaV3.2 isoform is responsible for them. J. Cell. Physiol. 227: 2542–2555, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
T-type Ca2+ channel family includes three subunits CaV3.1, CaV3.2 and CaV3.3 and have been shown to control burst firing and intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigated whether CaV3.1 channels could generate a pacemaker current and contribute to cell excitability. CaV3.1 clones were over-expressed in the neuronal cell line NG108-15. CaV3.1 channel expression induced repetitive action potentials, generating spontaneous membrane potential oscillations (MPOs) and concomitant [Ca2+]i oscillations. These oscillations were inhibited by T-type channels antagonists and were present only if the membrane potential was around −61 mV. [Ca2+]i oscillations were critically dependent on Ca2+ influx through CaV3.1 channels and did not involve Ca2+ release from the endoplasmic reticulum. The waveform and frequency of the MPOs are constrained by electrophysiological properties of the CaV3.1 channels. The trigger of the oscillations was the CaV3.1 window current. This current induced continuous [Ca2+]i increase at −60 mV that depolarized the cells and triggered MPOs. Shifting the CaV3.1 window current potential range by increasing the external Ca2+ concentration resulted in a corresponding shift of the MPOs threshold. The hyperpolarization-activated cation current (Ih) was not required to induce MPOs, but when expressed together with CaV3.1 channels, it broadened the membrane potential range over which MPOs were observed. Overall, the data demonstrate that the CaV3.1 window current is critical in triggering intrinsic electrical and [Ca2+]i oscillations.  相似文献   

7.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

8.
Voltage-gated Ca2+ (CaV) channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type) a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR). In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.  相似文献   

9.
The whole cell variant of the patch-clamp technique was used to investigate the actions of polyamine spider toxins and their analogues on high voltage-activated Ca2+ currents. The actions of synthesised FTX (putative natural toxin from the American funnel web spider), sFTX-3.3, Orn-FTX-3.3 and Lys-FTX-3.3 (synthetic analogues of FTX) were studied using cultured dorsal root ganglion neurones from neonatal rats, C2D7 cells (HEK293 cells stably coexpressing recombinant human N-type voltage-activated Ca2+ channel, α1B-1-α2bδβ1b subunits) and freshly isolated cerebellar Purkinje neurones. In dorsal root ganglion neurones, sFTX-3.3 (10 μM) inhibited high voltage-activated Ca2+ currents evoked by depolarisations to 0 mV from a holding potential of −90 mV. Partial overlap in Ca2+ current sensitivity to the polyamine sFTX-3.3 and the peptide spider toxin ω-Aga IVA was observed. However, evidence also suggests sFTX-3.3 and ω-Aga IVA do not show complete pharmacological overlap and that distinct parts of the Ca2+ current are sensitive to one of two inhibitors. The arginine group on sFTX-3.3 appears to be important for its inhibitory action on Ca2+ currents, because analogues where this amino acid was replaced with either ornithine (Orn-FTX-3.3) or lysine (Lys-FTX-3.3) were relatively inactive at concentrations below 1 mM. Synthesised FTX (100 μM) was inactive as an inhibitor of Ca2+ currents recorded from dorsal root ganglion and only produced modest effects in Purkinje neurones and C2D7 cells. At a concentration of 1 mM, nonselective actions were observed that indicated that synthesised FTX and sFTX-3.3 could reversibly inhibit both N- and P-type Ca2+ channels equally well. In conclusion, the potency of polyamines as nonselective inhibitors of Ca2+ channels is in part determined by the presence of a terminal arginine, and this may involve an interaction between terminal guanidino groups with Ca2+ binding sites.  相似文献   

10.
Passive Glial Cells, Fact or Artifact?   总被引:3,自引:0,他引:3  
Astrocytes that are recorded in acute tissue slices of rat hippocampus using whole-cell patch-clamp, commonly exhibit voltage-activated Na+ and K+ currents. Some reports have described astrocytes that appear to lack voltage-activated currents and proposed that these cells constitute a subpopulation of electrophysiologically passive astrocytes. We show here that these cells can spontaneously change during a recording unmasking expression of previously suppressed voltage-activated currents, suggesting that such cells do not represent a subpopulation of passive astrocytes. Superfusion of a low Ca2+/EGTA solution was able to reversibly suppress voltage-activated K+ currents in cultured astrocytes. Currents were restored upon addition of normal bath Ca2+. These effects of Ca2+ on both outward and inward K+ currents were dose- and time-dependent, with increasing concentrations of Ca2+ (from 0 to 800 μm) leading to a gradual unmasking of voltage-dependent outward and inward K+ currents. The transition from an apparently passive cell to one exhibiting prominent voltage-activated currents was not associated with any changes in membrane capacitance or access resistance. By contrast, in cells in which low access resistance or poor seal accounted for the absence of voltage-activated currents, improvement of cell access was always accompanied by changes in series resistance and membrane capacitance. We propose that spillage of pipette solution containing low Ca2+/EGTA during cell approach in slice recordings and/or poor cell access, lead to a transient masking of voltage-activated currents even in astrocytes that express prominent voltage-activated currents. These cells, however, do not constitute a subpopulation of electrophysiologically passive astrocytes. Received: 22 April 1998/Revised: 8 September 1998  相似文献   

11.
Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca2+-dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneously firing cells: low-threshold, steep voltage-dependence of activation and slow inactivation. By using CaV1 .3-/- KO mice and the AP-clamp it has been possible to resolve the time course of CaV1.3 pacemaker currents, which is similar to that regulating substantia nigra dopaminergic neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-inactivating BK channels within membrane nanodomains and controls AP repolarization. The ability to carry subthreshold Ca2+ currents and activate BK channels confers to CaV1.3 the unique feature of driving Ca2+ loading during long interspike intervals and, possibly, to control the Ca2+-dependent exocytosis and endocytosis processes that regulate catecholamine secretion and vesicle recycling.  相似文献   

12.
The auxiliary CaVα2δ-1 subunit is an important component of voltage-gated Ca2+ (CaV) channel complexes in many tissues and of great interest as a drug target. Nevertheless, its exact role in specific cell functions is still unknown. This is particularly important in the case of the neuronal L-type CaV channels where these proteins play a key role in the secretion of neurotransmitters and hormones, gene expression, and the activation of other ion channels. Therefore, using a combined approach of patch-clamp recordings and molecular biology, we studied the role of the CaVα2δ-1 subunit on the functional expression and the pharmacology of recombinant L-type CaV1.3 channels in HEK-293 cells. Co-expression of CaVα2δ-1 significantly increased macroscopic currents and conferred the CaV1.3α1/CaVβ3 channels sensitivity to the antiepileptic/analgesic drugs gabapentin and AdGABA. In contrast, CaVα2δ-1 subunits harboring point mutations in N-glycosylation consensus sequences or the proteolytic site as well as in conserved cysteines in the transmembrane δ domain of the protein, reduced functionality in terms of enhancement of CaV1.3α1/CaVβ3 currents. In addition, co-expression of the δ domain drastically inhibited macroscopic currents through recombinant CaV1.3 channels possibly by affecting channel synthesis. Together these results provide several lines of evidence that the CaVα2δ-1 auxiliary subunit may interact with CaV1.3 channels and regulate their functional expression.  相似文献   

13.
Large conductance Ca2+-activated K+ channel (BKCa) is a potential target for coronary artery-relaxing medication, but its functional regulation is largely unknown. Here, we report that inositol trisphosphate (IP3) activated BKCa channels in isolated porcine coronary artery smooth muscle cells and by which decreased the coronary artery tone. Both endogenous and exogenous IP3 increased the spontaneous transient outward K+ currents (STOC, a component pattern of BKCa currents) in perforated and regular whole-cell recordings, which was dependent on the activity of IP3 receptors. IP3 also increased the macroscopic currents (MC, another component pattern of BKCa currents) via an IP3 receptor- and sarcoplasmic Ca2+ mobilization-independent pathway. In inside-out patch recordings, direct application of IP3 to the cytosolic side increased the open probability of single BKCa channel in an IP3 receptor-independent manner. We conclude that IP3 is an activator of BKCa channels in porcine coronary smooth muscle cells and exerts a coronary artery-relaxing effect. The activation of BKCa channels by IP3 involves the enhancement of STOCs via IP3 receptors and stimulation of MC by increasing the Ca2+ sensitivity of the channels.  相似文献   

14.
Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca2+ mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca2+ permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca2+ channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca2+ channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca2+ transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca2+ channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca2+-driven signals in excitable cells.  相似文献   

15.

Background

Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that KCa3.1 K+ channel-dependent cell processes contribute to IPF pathophysiology.

Methods

KCa3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of KCa3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct KCa3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc]).

Results

Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed KCa3.1 channel mRNA and protein. KCa3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. KCa3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. KCa3.1 was expressed strongly in IPF tissue. KCa3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility in vitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca2+.

Conclusions

KCa3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking KCa3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.  相似文献   

16.
We investigated the biophysical mechanism of inhibition of recombinant T-type calcium channels CaV3.1 and CaV3.2 by nitrous oxide (N2O). To identify functionally important channel structures, chimeras with reciprocal exchange of the N-terminal domains I and II and C-terminal domains III and IV were examined. In whole-cell recordings N2O significantly inhibited CaV3.2, and – less pronounced – CaV3.1. A CaV3.2-prevalent inhibition of peak currents was also detected in cell-attached multi-channel patches. In cell-attached patches containing ≤3 channels N2O reduced average peak current of CaV3.2 by decreasing open probability and open time duration. Effects on CaV3.1 were smaller and mediated by a reduced fraction of sweeps containing channel activity. Without drug, single CaV3.1 channels were significantly less active than CaV3.2. Chimeras revealed that domains III and IV control basal gating properties. Domains I and II, in particular a histidine residue within CaV3.2 (H191), are responsible for the subtype-prevalent N2O inhibition. Our study demonstrates the biophysical (open times, open probability) and structural (domains I and II) basis of action of N2O on CaV3.2. Such a fingerprint of single channels can help identifying the molecular nature of native channels. This is exemplified by a characterization of single channels expressed in human hMTC cells as functional homologues of recombinant CaV3.1.  相似文献   

17.
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.  相似文献   

18.
Summary The action of GRF on GH3 cell membrane was examined by patch electrode techniques. Under current clamp with patch elecrtrode, spontaneous action potentials were partially to totally eliminated by application of GRF. In the case of partial elimination, the duration of remaining spontaneous action potentials was prolonged and the amplitude of afterhyperpolarization was decreased. The evoked actiion potential in the cells which did not show spontaneous action potentials was also eliminated by GRF. In order to examine what channels were affected by GRF, voltage-clamp analysis was performed. It was revealed that voltage-gated Ca2+ channel current and Ca2+-induced K+ channels current were decreased by GRF, while voltage-gated Na+ channel and delayed K+ channel current was considered to be a consequence of he decrease of voltage-gated Ca2+ channels current. Therefore it is likely that the effect of GRF on GH3 cells was due to the block of voltage-gated Ca2+ channels. The elimination of action potential under current clamp corresponded to the block of voltage-gated Ca2+ channels and the prolongation of action potential could be explained by the decrease of Ca2+-induced K+ channel current. The amplitude decrease of afterhyperpolarization could also be explained by the reduction of Ca2+-induced K+ channel current. Thus the results under current clamp well coincide with the results under voltage clamp. Hormone secretion from GH3 cells was not stimulated by GRF. However, the finding that GRF solely blocked voltage-gated Ca2+ channel suggested the specific action of GRF on GH3 cell membranes.  相似文献   

19.
《Peptides》1997,18(6):877-883
Koshimura, K., Y. Murakami, M. Mitsushima, T. Hori and Y. Kato. Activation of Na+ channels in Gh3 cells and human pituitary adenoma cells by Pacap. Peptides 18(6) 877–883, 1997.—The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on ion channels were examined in GH3 cells and human pituitary adenoma cells. In GH3 cells, PACAP-38 (10-9 M) reversibly activated tetrodotoxin-sensitive Na+ channels but had little effect on nicardipine-sensitive Ca2+ channels. PACAP-induced increase in Na+ currents was inhibited by PACAP(6-38), a specific PACAP receptor antagonist, and Rp-cAMPs, an inhibitor for protein kinase A, and mimicked by 8-bromo-cAMP. In human pituitary adenoma cells, PACAP also activated tetrodotoxin-sensitive Na+ channels and growth hormone secretion. These results suggest the possibility that PACAP can activate voltage-gated Na+ channels via adenylate cyclase-protein kinase A pathway in the pituitary.  相似文献   

20.
cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号