首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanylyl cyclases in eukaryotic unicells were biochemically investigated in the ciliates Paramecium and Tetrahymena, in the malaria parasite Plasmodium and in the ameboid Dictyostelium. In ciliates guanylyl cyclase activity is calcium-regulated suggesting a structural kinship to similarly regulated membrane-bound guanylyl cyclases in vertebrates. Yet, cloning of ciliate guanylyl cyclases revealed a novel combination of known modular building blocks. Two cyclase homology domains are inversely arranged in a topology of mammalian adenylyl cyclases, containing two cassettes of six transmembrane spans. In addition the protozoan guanylyl cyclases contain an N-terminal P-type ATPase-like domain. Sequence comparisons indicate a compromised ATPase function. The adopted novel function remains enigmatic to date. The topology of the guanylyl cyclase domain in all protozoans investigated is identical. A recently identified Dictyostelium guanylyl cyclase lacks the N-terminal P-type ATPase domain. The close functional relation of Paramecium guanylyl cyclases to mammalian adenylyl cyclases has been established by heterologous expression, respective point mutations and a series of active mammalian adenylyl cyclase/Paramecium guanylyl cyclase chimeras. The unique structure of protozoan guanylyl cyclases suggests that unexpectedly they do not share a common guanylyl cyclase ancestor with their vertebrate congeners but probably originated from an ancestral mammalian-type adenylyl cyclase.  相似文献   

2.
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7A. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase.  相似文献   

3.
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.  相似文献   

4.
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases.  相似文献   

5.
The recent structure determinations of the mammalian effector enzyme adenylyl cyclase reveal the structure of its catalytic core, provide new insights into its catalytic mechanism and suggest how diverse signaling molecules regulate its activity.  相似文献   

6.
D Koesling  G Schultz  E B?hme 《FEBS letters》1991,280(2):301-306
The cyclic GMP-forming enzyme guanylyl cyclase exists in cytosolic and in membrane-bound forms differing in structure and regulations. Determination of the primary structures of the guanylyl cyclases revealed that the cytosolic enzyme form consists of two similar subunits and that membrane-bound guanylyl cyclases represent enzyme forms in which the catalytic part is located in an intracellular, C-terminal domain and is regulated by an extracelluar, N-terminal receptor domain. A domain of 250 amino acids conserved in all guanylyl cyclases appears to be required for the formation of cyclic nucleotide, as this homologous domain is also found in the cytosolic regions of the adenylyl cyclase. The general structures of guanylyl cyclases shows similarities with other signal transducing enzymes such as protein-tyrosine phosphatases and protein-tyrosine kinases. which also exist in cytosolic and receptor-linked forms.  相似文献   

7.
cAMP serves as a second messenger in virtually all organisms. The most wide-spread class of cAMP-generating enzymes are the class III adenylyl cyclases. Most class III adenylyl cyclases are multi-domain proteins. The catalytic domains exclusively work as dimers, catalysis proceeds at the dimer interface, so that both monomers provide catalytic residues to each catalytic center. Inspection of amino acid sequence profiles suggests a division of the class III adenylyl cyclases in to four subclasses, class IIIa–IIId. Genome projects and postgenomic analysis have provided novel aspects in terms of catalysis and regulation. Alterations in the canonical catalytic residues occur in all four subclasses suggesting a plasticity of the catalytic mechanisms. The vast variety of additional, probably regulatory modules found in class III adenylyl cyclases obviously reflects a large collection of regulatory inputs the catalytic domains have adapted to. The large versatility of class III adenylyl cyclase catalytic domains remains a major scientific challenge.  相似文献   

8.
We cloned a guanylyl cyclase of 280 kDa from the ciliate Paramecium which has an N-terminus similar to that of a P-type ATPase and a C-terminus with a topology identical to mammalian adenylyl cyclases. Respective signature sequence motifs are conserved in both domains. The cytosolic catalytic C1a and C2a segments of the cyclase are inverted. Genes coding for topologically identical proteins with substantial sequence similarities have been cloned from Tetrahymena and were detected in sequences from Plasmodium deposited by the Malaria Genome Project. After 99 point mutations to convert the Paramecium TAA/TAG-Gln triplets to CAA/CAG, together with partial gene synthesis, the gene from Paramecium was heterologously expressed. In Sf9 cells, the holoenzyme is proteolytically processed into the two domains. Immunocytochemistry demonstrates expression of the protein in Paramecium and localizes it to cell surface membranes. The data provide a novel structural link between class III adenylyl and guanylyl cyclases and imply that the protozoan guanylyl cyclases evolved from an ancestral adenylyl cyclase independently of the mammalian guanylyl cyclase isoforms. Further, signal transmission in Ciliophora (Paramecium, Tetrahymena) and in the most important endoparasitic phylum Apicomplexa (Plasmodium) is, quite unexpectedly, closely related.  相似文献   

9.
We report here that guanylyl cyclase activity is associated with two large integral membrane proteins (PfGCalpha and PfGCbeta) in the human malaria parasite Plasmodium falciparum. Unusually, the proteins appear to be bifunctional; their amino-terminal regions have strong similarity with P-type ATPases, and the sequence and structure of the carboxyl-terminal regions conform to that of G protein-dependent adenylyl cyclases, with two sets of six transmembrane sequences, each followed by a catalytic domain (C1 and C2). However, amino acids that are enzymatically important and present in the C2 domain of mammalian adenylyl cyclases are located in the C1 domain of the P. falciparum proteins and vice versa. In addition, certain key residues in these domains are more characteristic of guanylyl cyclases. Consistent with this, guanylyl cyclase activity was obtained following expression of the catalytic domains of PfGCbeta in Escherichia coli. In P. falciparum, expression of both genes was detectable in the sexual but not the asexual blood stages of the life cycle, and PfGCalpha was localized to the parasite/parasitophorous vacuole membrane region of gametocytes. The profound structural differences identified between mammalian and parasite guanylyl cyclases suggest that aspects of this signaling pathway may be mechanistically distinct.  相似文献   

10.
Adenylyl and guanylyl cyclases synthesize second messenger molecules by intramolecular esterification of purine nucleotides, i.e., cAMP from ATP and cGMP from GTP, respectively. Despite their sequence homology, both families of mammalian cyclases show remarkably different regulatory patterns. In an attempt to define the functional domains in adenylyl cyclase responsible for their isotypic-common activation by Galphas or forskolin, dimeric chimeras were constructed from soluble guanylyl cyclase alpha1 subunit and the C-terminal halves of adenylyl cyclases type I, II, or V. The cyclase-hybrid generated cAMP and was inhibited by P-site ligands. The data establish structural equivalence and the ability of functional complement at the catalytic sites in both cyclases. Detailed enzymatic characterization of the chimeric cyclase revealed a crucial role of the N-terminal adenylyl cyclase half for stimulatory actions, and a major importance of the C-terminal part for nucleotide specificity.  相似文献   

11.
Class III adenylyl cyclases usually possess six highly conserved catalytic residues. Deviations in these canonical amino acids are observed in several putative adenylyl cyclase genes as apparent in several bacterial genomes. This suggests that a variety of catalytic mechanisms may actually exist. The gene Rv0386 from Mycobacterium tuberculosis codes for an adenylyl cyclase catalytic domain fused to an AAA-ATPase and a helix-turn-helix DNA-binding domain. In Rv0386, the standard substrate, adenine-defining lysine-aspartate couple is replaced by glutamine-asparagine. The recombinant adenylyl cyclase domain was active with a V(max) of 8 nmol cAMP.mg(-1).min(-1). Unusual for adenylyl cyclases, Rv0386 displayed 20% guanylyl cyclase side-activity with GTP as a substrate. Mutation of the glutamine-asparagine pair either to alanine residues or to the canonical lysine-aspartate consensus abolished activity. This argues for a novel mechanism of substrate selection which depends on two non-canonical residues. Data from individual and coordinated point mutations suggest a model for purine definition based on an amide switch related to that previously identified in cyclic nucleotide phosphodiesterases.  相似文献   

12.
D Koesling  E B?hme  G Schultz 《FASEB journal》1991,5(13):2785-2791
Guanylyl cyclases, which catalyze the formation of the intracellular signal molecule cyclic GMP from GTP, display structural features similar to other signal-transducing enzymes such as protein tyrosine-kinases and protein tyrosine-phosphatases. So far, three isoforms of mammalian membrane-bound guanylyl cyclases (GC-A, GC-B, GC-C), which are stimulated by either natriuretic peptides (GC-A, GC-B) or by the enterotoxin of Escherichia coli (GC-C), have been identified. These proteins belong to the group of receptor-linked enzymes, with different NH2-terminal extracellular receptor domains coupled to a common intracellular catalytic domain. In contrast to the membrane-bound enzymes, the heme-containing soluble guanylyl cyclase is stimulated by NO and NO-containing compounds and consists of two subunits (alpha 1 and beta 1). Both subunits contain the putative catalytic domain, which is conserved in the membrane-bound guanylyl cyclases and is found twice in adenylyl cyclases. Coexpression of the alpha 1- and beta 1-subunit is required to yield a catalytically active enzyme. Recently, another subunit of soluble guanylyl cyclase was identified and designated beta 2, revealing heterogeneity among the subunits of soluble guanylyl cyclase. Thus, different enzyme subunits may be expressed in a tissue-specific manner, leading to the assembly of various heterodimeric enzyme forms. The implications concerning the physiological regulation of soluble guanylyl cyclase are not known, but different mechanisms of soluble enzyme activation may be due to heterogeneity among the subunits of soluble guanylyl cyclase.  相似文献   

13.
Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.  相似文献   

14.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   

15.
Soluble adenylyl cyclase (sAC) is an evolutionarily conserved bicarbonate sensor. In mammals, it is responsible for bicarbonate-induced, cAMP-dependent processes in sperm required for fertilization and postulated to be involved in other bicarbonate- and carbon dioxide-dependent functions throughout the body. Among eukaryotes, sAC-like cyclases have been detected in mammals and in the fungi Dictyostelium; these enzymes display extensive similarity extending through two cyclase catalytic domains and a long carboxy terminal extension. sAC-like cyclases are also found in a number of bacterial phyla (Cyanobacteria, Actinobacteria, and Proteobacteria), but these enzymes generally possess only a single catalytic domain and little, if any, homology with the remainder of the mammalian protein. Database mining through a number of recently sequenced genomes identified sAC orthologues in additional metazoan phyla (Arthropoda and Chordata) and additional bacterial phyla (Chloroflexi). Interestingly, the Chloroflexi sAC-like cyclases, a family of three enzymes from the thermophilic eubacterium, Chloroflexus aurantiacus, are more similar to eukaryotic sAC-like cyclases (i.e., mammalian sAC and Dictyostelium SgcA) than they are to other bacterial adenylyl cyclases (ACs) (i.e., from Cyanobacteria). The Chloroflexus sAC-like cyclases each possess two cyclase catalytic domains and extensive similarity with mammalian enzymes through their carboxy termini. We cloned one of the Chloroflexus sAC-like cyclases and confirmed it to be stimulated by bicarbonate. These data extend the family of organisms possessing bicarbonate-responsive ACs to numerous phyla within the bacterial and eukaryotic kingdoms.The nucleotide sequence of rabbit sAC has been deposited (GenBank accession number AY212921)  相似文献   

16.
The mycobacterial Rv1625c gene product is an adenylyl cyclase with sequence similarity to the mammalian enzymes. The catalytic domain of the enzyme forms a homodimer and residues specifying adenosine triphosphate (ATP) specificity lie at the dimer interface. Mutation of these residues to those present in guanylyl cyclases failed to convert the enzyme to a guanylyl cyclase, but dramatically reduced its adenylyl cyclase activity and altered its oligomeric state. Computational modeling revealed subtle differences in the dimer interface that could explain the biochemical data, suggesting that the structural and catalytic features of this homodimeric adenylyl cyclase are in contrast to those of the heterodimeric mammalian enzymes.  相似文献   

17.
Dominant negative mutants are unique tools to define functions of a protein, not only within complex cellular and organismal contexts, but also mechanistically within a protein. Guanylyl cyclases are amenable to studies with dominant negative mutants, with their own sets of opportunities for insight and pitfalls to overcome. Membrane and soluble forms of guanylyl cyclase represent self-contained signal transduction modules that recognize, transduce, and amplify an external signal to give a carefully controlled response. Beginning with recognition of peptide hormones versus nitric oxide, membrane and soluble guanylyl cyclases are considerably different, except that their catalytic domains are closely related. Studies on these catalytic domains and their counterparts in adenylyl cyclases have raised an integral question of whether one or two domains form a catalytic site, which remains unresolved. Regardless of which model is correct, guanylyl cyclases appear to require an oligomeric state to function properly. The inferred relationship between protein-protein interaction and function is the basis for developing dominant negative mutants, which can be designed without prior structural information. Soluble guanylyl cyclases exist in a heterodimeric state, whereas membrane guanylyl cyclases are homodimeric, or possibly higher-order oligomers. These properties dictate that dominant negative mutants of membrane and soluble guanylyl cyclases be approached in fundamentally different ways, with regard to their design, their functional consequences, and their limitations. Using dominant negative mutants as specific inhibitors in complex systems, such as transgenic animals, represents a significant advance, and continuing improvements are just an inkling of the extraordinary potential of this approach. For example, the function of a protein can be obscured because it is expressed in multiple cell types; by restricting its pattern of expression, a cell-specific promoter, coupled to a dominant negative mutant, can pinpoint this function. As more sophisticated methods are developed, dominant negative mutants will provide additional opportunities to unveil new regulatory mechanisms, new signaling pathways, or even new therapeutic approaches.  相似文献   

18.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

19.
The Class III nucleotide cyclases are found in bacteria, eukaryotes and archaebacteria. Our survey of the bacterial and archaebacterial genome and plasmid sequences identified 193 Class III cyclase genes in only 29 species, of which we predict the majority to be adenylyl cyclases. Interestingly, several putative cyclase genes were found to have non-conserved substrate specifying residues. Ancestors of the eukaryotic C1-C2 domain containing soluble adenylyl cyclases as well as the protist guanylyl cyclases were found in bacteria. Diverse domains were fused to the cyclase domain and phylogenetic analysis indicated that most proteins within a single cluster have similar domain compositions, emphasising the ancient evolutionary origin and versatility of the cyclase domain.  相似文献   

20.
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号