首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1], [2], [3] and [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-β mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran–GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.  相似文献   

3.
Dysregulation of microRNAs in cancer: Playing with fire   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2] and [3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV–vis absorption spectra of the reduced CO-saturated state [4] and [5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle.  相似文献   

6.
Cortactin is involved in invadopodia and podosome formation [1], pathogens and endosome motility [2], and persistent lamellipodia protrusion [ [3] and [4] ]; its overexpression enhances cellular motility and metastatic activity [ [5] , [6] , [7] and [8] ]. Several mechanisms have been proposed to explain cortactin's role in Arp2/3-driven actin polymerization [ [9] and [10] ], yet its direct role in cell movement remains unclear. We use a biomimetic system to study the mechanism of cortactin-mediated regulation of actin-driven motility [11]. We tested the role of different cortactin variants that interact with Arp2/3 complex and actin filaments distinctively. We show that wild-type cortactin significantly enhances the bead velocity at low concentrations. Single filament experiments show that cortactin has no significant effect on actin polymerization and branch stability, whereas it strongly affects the branching rate driven by Wiskott-Aldrich syndrome protein (WASP)-VCA fragment and Arp2/3 complex. These results lead us to propose that cortactin plays a critical role in translating actin polymerization at a bead surface into motion, by releasing WASP-VCA from the new branching site. This enhanced release has two major effects: it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.  相似文献   

7.
Volatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [ [1] and [2] ]. Genetic studies in Caenorhabditis elegans [ [3] and [4] ], Drosophila [ [3] and [5] ], and mice [ [6] , [7] , [8] and [9] ] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity. Leak channels selective for K+ [ [10] , [11] , [12] and [13] ] or permeable to Na+ [14] are critical for establishing RMP. We hypothesized that halothane, a VA, caused immobility by altering the neuronal RMP. In C. elegans, halothane-induced immobility is acutely and completely reversed by channelrhodopsin-2 based depolarization of the RMP when expressed specifically in cholinergic neurons. Furthermore, hyperpolarizing cholinergic neurons via halorhodopsin activation increases sensitivity to halothane. The sensitivity of C. elegans to halothane can be altered by 25-fold by either manipulation of membrane conductance with optogenetic methods or generation of mutations in leak channels that set the RMP. Immobility induced by another VA, isoflurane, is not affected by these treatments, thereby excluding the possibility of nonspecific hyperactivity. The sum of our data indicates that leak channels and the RMP are important determinants of halothane-induced general anesthesia.  相似文献   

8.
A history of Pleistocene population expansion has been inferred from the frequency spectrum of polymorphism in the mitochondrial DNA (mtDNA) of many human populations. Similar patterns are not typically observed for autosomal and X-linked loci. One explanation for this discrepancy is a recent population bottleneck, with different rates of recovery for haploid and autosomal loci as a result of their different effective population sizes. This hypothesis predicts that mitochondrial and Y chromosomal DNA will show a similar skew in the frequency spectrum in populations that have experienced a recent increase in effective population size. We test this hypothesis by resequencing 6.6 kb of noncoding Y chromosomal DNA and 780 basepairs of the mtDNA cytochrome c oxidase subunit III (COIII) gene in 172 males from 5 African populations. Four tests of population expansion are employed for each locus in each population: Fu's Fs statistic, the R(2) statistic, coalescent simulations, and the mismatch distribution. Consistent with previous results, patterns of mtDNA polymorphism better fit a model of constant population size for food-gathering populations and a model of population expansion for food-producing populations. In contrast, none of the tests reveal evidence of Y chromosome growth for either food-gatherers or food-producers. The distinct mtDNA and Y chromosome polymorphism patterns most likely reflect sex-biased demographic processes in the recent history of African populations. We hypothesize that males experienced smaller effective population sizes and/or lower rates of migration during the Bantu expansion, which occurred over the last 5,000 years.  相似文献   

9.
To investigate the origins and relationships of Australian and Melanesian populations, 611 males from 18 populations from Australia, Melanesia, and eastern/southeastern Asia were typed for eight single-nucleotide polymorphism (SNP) loci and seven short tandem-repeat loci on the Y chromosome. A unique haplotype, DYS390.1del/RPS4Y711T, was found at a frequency of 53%-69% in Australian populations, whereas the major haplotypes found in Melanesian populations (M4G/M5T/M9G and DYS390.3del/RPS4Y711T) are absent from the Australian populations. The Y-chromosome data thus indicate independent histories for Australians and Melanesians, a finding that is in agreement with evidence from mtDNA but that contradicts some analyses of autosomal loci, which show a close relationship between Australian and Melanesian (specifically, highland Papua New Guinean) populations. Since the Australian and New Guinean landmasses were connected when first colonized by humans > or =50,000 years ago but separated some 8,000 years ago, a possible way to reconcile all the genetic data is to infer that the Y-chromosome and mtDNA results reflect the past 8,000 years of independent history for Australia and New Guinea, whereas the autosomal loci reflect the long preceding period of common origin and shared history. Two Y-chromosome haplotypes (M119C/M9G and M122C/M9G) that originated in eastern/southeastern Asia are present in coastal and island Melanesia but are rare or absent in both Australia and highland Papua New Guinea. This distribution, along with demographic analyses indicating that population expansions for both haplotypes began approximately 4,000-6,000 years ago, suggests that these haplotypes were brought to Melanesia by the Austronesian expansion. Most of the populations in this study were previously typed for mtDNA SNPs; population differentiation is greater for the Y chromosome than for mtDNA and is significantly correlated with geographic distance, a finding in agreement with results of similar analyses of European populations.  相似文献   

10.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   

11.
The haplotypes of Y chromosome (paternally inherited) and mtDNA (maternally inherited) were analyzed in representatives of six Jewish communities (Ashkenazic, North African, Near Eastern, Yemenite, Minor Asian/Balkanian, and Ethiopian). For both elements, the Ethiopian community has a mixture of typically African and typically Caucasian haplotypes and is significantly different from all others. The other communities, whose haplotypes are mostly Caucasian, are more closely related; significant differences that were found among some of them possibly indicate the effects of admixture with neighboring communities of non-Jews. The different contribution of the Y chromosome and mtDNA haplotypes to the significant differences among the communities can be explained by unequal involvement of males and females in the different admixtures. In all communities, except the Ethiopians, the level of diversity () for Y chromosome haplotypes is higher than that for mtDNA haplotypes, suggesting that in each community the people who become parents include more males than females. An opposite proportion (more females than males) is found among the Ethiopians. Correspondence to: U. Ritte  相似文献   

12.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

13.
In migrating cells, the relative importance of myosin II contractility for cell rear retraction varies [ [1] , [2] , [3] , [4] , [5] , [6] , [7] , [8] , [9] , [10] , [11] and [12] ]. However, in myosin II-inhibited polarizing cells, actin organization is compromised [ [13] , [14] , [15] , [16] , [17] and [18] ]; thus it remains unclear whether myosin II is simply required for correct actin arrangement or also directly drives rear retraction [9]. Ascaris sperm cells lack actin and associated motors, and depolymerization of major sperm protein is instead thought to pull the cell rear forward [ [19] and [20] ]. Opposing views exist on whether actin could also have this function [ [19] and [20] ] and has not been directly experimentally sought. We probe function at high temporal resolution in polarizing fibroblasts that establish migration by forming the cell rear first [ [9] , [15] and [21] ]. We show that in cells with correctly organized actin, that actin filament depolymerization directly drives retraction of the rear margin to polarize cells and spatially accounts for most cell rear retraction during established migration. Myosin II contractility is required early, to form aligned actin bundles that are needed for polarization, and also later to maintain bundle length that ensures directed protrusion at the cell front. Our data imply a new mechanism: actin depolymerization-based force retracts the cell rear to polarize cells with no direct contribution from myosin II contractility.  相似文献   

14.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

15.
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeric DNA is synthesized by telomerase, which is expressed only at the early stages of development [ [1] and [2] ]. To become malignant, any cell has to be able to replenish telomeres [3]. Thus, understanding how telomere length is monitored has significant medical implications, especially in the fields of aging and cancer. In yeast, telomerase is constitutively active. A large network of genes participates in controlling telomere length [ [4] , [5] , [6] , [7] and [8] ]. Tor1 and Tor2 (targets of rapamycin [9]) are two similar kinases that regulate cell growth [10]. Both can be found as part of the TOR complex 1 (TORC1 [11]), which coordinates the response to nutrient starvation and is sensitive to rapamycin [12]. The rapamycin-insensitive TOR complex 2 (TORC2) contains only Tor2 and regulates actin cytoskeleton polarization [13]. Here we provide evidence for a role of TORC1 in telomere shortening upon starvation in yeast cells. The TORC1 signal is transduced by the Gln3/Gat1/Ure2 pathway, which controls the levels of the Ku heterodimer, a telomere regulator. We discuss the potential implications for the usage of rapamycin as a therapeutic agent against cancer and the effect that calorie restriction may have on telomere length.  相似文献   

16.
The genetic variability of a Quechua-speaking Andean population from Peru was examined on the basis of four Y chromosome markers and restriction sites that define the Amerindian mitochondrial DNA (mtDNA) haplogroups. Forty-nine out of 52 (90.4%) individuals had mtDNA which belonged to one of the four common Amerindian haplogroups, with 54% of the samples belonging to haplogroup B. Among 25 males, 12 had an Amerindian Y chromosome, which exists as four haplotypes defined on the basis of the DYS287, DYS199, DYS392 and DYS19 markers, three of which are shared by Amazonian Amerindians. Thus, there is a clear directionality of marriages, with an estimated genetic admixture with non-Amerindians that is 9 times lower for mtDNA than for Y chromosome DNA. The comparison of mtDNA of Andean Amerindians with that of people from other regions of South America in a total of 1,086 individuals demonstrates a geographical pattern, with a decreasing frequency of A and C haplotypes and increasing frequency of the D haplotype from the north of the Amazon River to the south of the Amazon River, reaching the lowest and the highest frequencies, respectively, in the more southern populations of Chile and Argentina. Conversely, the highest and lowest frequencies of the haplogroup B are found, respectively, in the Andean and the North Amazon regions, and it is absent from some southern populations, suggesting that haplotypes A, C and D, and haplotype B may have been dispersed by two different migratory routes within the continent.  相似文献   

17.
Historical hybridization between Bison bison (bison) and Bos taurus (cattle) has been well documented and resulted in cattle mitochondrial DNA (mtDNA) introgression, previously identified in six different bison populations. In order to examine Y chromosome introgression, a microsatellite marker (BYM-1) with non-overlapping allele size distributions in bison and cattle was isolated from a bacterial artificial chromosome (BAC) clone, and was physically assigned to the Y chromosome by fluorescence in situ hybridization. BYM-1 genotypes for a sample of 143 male bison from 10 populations, including all six populations where cattle mtDNA haplotypes were previously identified, indicated that cattle Y chromosome introgression had not occurred in these bison populations. The differential permeability of uniparentally inherited markers to introgression is consistent with observations of sterility among first generation hybrid males and a sexual asymmetry in the direction of hybridization favouring matings between male bison and female cattle.  相似文献   

18.
Homologous markers on the sex-specific regions of the X- and Y-chromosomes are differentially inherited through males and females, and have similar molecular characteristics. They may therefore be useful as a complement to the comparison of mtDNA and Y-chromosomal haplotypes for estimating sex-specific processes shaping human population structure. To test this idea, we analyzed XY-homologous microsatellite diversity in 33 human populations from Africa, Asia and Europe. Interpopulation comparisons suggest that the generally discordant pattern of genetic variation observed for X- and Y-linked markers could be an outcome of sex-specific migration processes (m(females)/m(males) approximately 3) or sex-specific demographic processes (N(females)/N(males) approximately 11) or a combination of both. However, intrapopulation diversity estimated by the X/Y ratio Watterson estimator (theta(H(Y))/theta(H(X))) suggests that the scenarios required to explain the global genetic variation of XY-homologous markers are many and complex, and that the sex-specific processes (effective population size and migration rate) shaping human population structures are likely to be specific to each population under study. XY-homologous markers provide an insight into the genuine complexity of sex-specific processes, and their further exploitation in human population studies seems worthwhile.  相似文献   

19.
从父系和母系基因库水平上,研究不同分布地区白族群体之间的遗传结构的异同,并对其族源以及本民族群体之间的微进化关系进行初步的探讨。利用PCR-RFLP方法对云南白族和湖南白族及云南的傣族、布依族、独龙族、怒族、阿昌族和湖南土家族共8个群体进行14个线粒体多态位点和Y染色体上的13个双等位基因位点进行基因分型。统计单倍型,在SPSS软件上进行主成分分析。结果显示,两个白族群体在Y染色体双等位基因单倍型分布上差异不大,以H6、H8为主要单倍型分布;在线粒体单倍群分布上,两个白族群体则差异显著,单倍群D、B、M8在湖南白族中的分布频率比云南白族高的多,而在云南白族中M^*、G、F的频率则比湖南白族高。对Y染色体单倍型分布频率进行主成分分析表明两个白族群体聚在一起,整体上和其他北方起源的群体聚成一组;而对线粒体的单倍群分布频率分析显示湖南白族接近湖南汉族和土家族,而云南白族则接近云南怒族和阿昌族。两个白族群体在父系遗传结构上相近,表明他们具有共同的父系族源;而母系遗传结构上的差异,可能与历史上迁到湖南的白族先民主要为男性军士,流寓到当地后与汉、土家等民族女子通婚所致。  相似文献   

20.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号