首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root hairs substantially extend root surface for ion uptake. Although many reports suggest a relationship between root hairs and phosphorus (P) uptake of plants, the role of root hairs in phosphorus uptake from soils is still debated. We measured uptake of phosphorus from soil directly via root hairs. Root hairs only were allowed to penetrate through a tightly stretched nylon screen (53 µm) glued to the bottom of a PVC tube. The penetrating root hairs grew for 2 and 4 days in soil labelled with radioisotope phosphorus (P) tracer 32P (185 kBq g-1 dry soil) filled in another PVC tube. Transparent plastic rings of thickness ranging from 0.25 mm to 2.0 mm were inserted between the two PVC tubes. This provided slit width for microscopic observations in situ, which confirmed that only root hairs were growing into the 32P labelled soil. In some cases no rings were inserted (slit width = 0) where both root hairs and root surface were in contact with the labelled soil (total 32P uptake). The uptake of32 P from soil via the root hairs only was quantified by measuring activity of 32P in the plant shoot (32P uptake only via root hairs).The results showed that when 70 percent of the root hairs grew into the labelled soil, they contributed to 63 percent of the total P uptake. With decreasing number of root hairs growing into the 32P labelled soil, the quantity of 32P in the plant shoot decreased. In this study, P uptake via root hairs was measured in a soil-based system, where root hairs were the only pathway of 32P from soil to the plant shoot. Therefore, this study provides a strong evidence on the substantial participation of root hairs in uptake of phosphorus from soil.  相似文献   

2.
Zhou Q  Wang L  Cai X  Wang D  Hua X  Qu L  Lin J  Chen T 《Journal of plant physiology》2011,168(11):1249-1255
Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showing different Na+ uptake. The results indicated that anatomically distinct root zones contributed differently to the overall uptake of Na+. The average Na+ uptake in root zones in which Casparian bands of the endo- and exo-dermis were interrupted by initiating lateral root primordia (root zone III) was significantly greater than that at the root apex, where Casparian bands were not yet formed (root zone I), or in the region where endo- and exo-dermis with Casparian bands were well developed (root zone II). The measurement of net Na+ fluxes using a non-invasive scanning ion-selective electrode technique (SIET) demonstrated that net Na+ flux varied significantly in different positions along developing rice roots, and a net Na+ influx was obvious at the base of young lateral root primordia. Since sodium fluxes changed significantly along developing roots of rice seedlings, we suggest that the significantly distinct net Na+ flux profile may be attributed to different apoplastic permeability due to lateral root primordia development for non-selective apoplastic bypass of ions along the apoplast.  相似文献   

3.
Structure-induced non-uniform water flow induces a heterogeneous distribution of surface-applied radionuclides in the soil profile. This study was conducted to assess the amount of 134Cs which can be taken up by a single root growing in an area enriched in 134Cs relative to the total amount of 134Cs that can be taken up by the whole root system growing in an area homogeneously contaminated with 134Cs. A split-root experiment was used to simulate the heterogeneous distribution of 134Cs and roots. Seedlings of maize (Zea mays L. cv Corso) were grown for 14 days in solution culture and then transferred to a two-compartment pot system, where a single root was grown in a 134Cs contaminated compartment while the rest of the root system was grown in an uncontaminated compartment. Plants with the whole root system growing in a solution contaminated with 134Cs were used as control. We tested the effect of the competition between Cs and K on the uptake and translocation of 134Cs by using two K concentrations, 0.2 and 1.05 mM. At the K concentration of the nutrient solution of 0.2 mM the single root representing 21% of the total root weight was able to take up 47% of the 134Cs taken up by the entire root system, while at 1.05 mM the single root, representing 15% of the total root weight, took up 15% of the 134Cs taken up by the entire root system. The translocation of 134Cs from the root to the shoots did not depend on the external K concentration in the nutrient solution, but it was lower in the split root treatment than in the control treatment at both K concentrations. Section Editor: R. W. Bell  相似文献   

4.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

5.
When [14C]indol-3yl-acetic acid was applied to the apical bud of 5-day old dwarf pea seedlings which possessed unbranched primary roots, a small amount of 14C was transported into the root system at a velocity of 11–14 mm h-1. Most of the 14C which entered the primary root accumulated in the young lateral root primordia, including the smallest detectable (20–30 mm from the primary root tip). In older (8-d old) seedlings in which the primary root bore well-developed lateral roots, 14C also accumulated in the tertiary root primordia. In contrast, little 14C was detected in the apical region of the primary root or, in older plants, in the apices of the lateral roots.Abbreviations IAA indol-3yl-acetic acid  相似文献   

6.
Seasonal changes of fine root density in the Southern Californian chaparral   总被引:1,自引:0,他引:1  
Summary Fine root extractions from soil cores of a south facing slope in the Southern Californian chaparral were used to study the dynamics of feeder root growth in a summer-dry area. The studies were concentrated on the root systems of Adenostoma fasciculatum, Arctostaphylos glauca, Ceanothus greggii, and Rhus ovata. The total fine root biomass of Adenostoma fasciculatum increased from 0.6 g dm-3 in early spring to 3.6 g dm-3 in late summer. Considering the specific soil conditions at this site and earlier gained information on fine root distribution with depth, the value of 3.6 g dm-3 converts to 1.58 kg m-2 of ground shaded by the shrub canopy. The observed seasonal biomass increase is mainly due to the accumulation of dead root material in the soil when low soil moisture contents presumably inhibited decomposition processes. The total length of living fine roots also increased during the season, e.g. from 0.8 m dm-3 to more than 5 m dm-3 (0.35 km m-2 to 2.2 km m-2) in A. fasciculatum. Unusual summer rains in the research year stimulated vigorous fine root growth at a time when the normally low soil moisture would prohibit further fine root growth. The average fine root diameters and total lengths of fine roots beneath one square meter of ground surface allowed an estimate of root area indices (RAI) analogous to the leaf area indices (LAI). The data provide evidence for a significant fine root turnover in the chaparral.  相似文献   

7.
The changes in external K+ concentration affect plant root growth. However, the molecular mechanism for perceiving a K+ signal to modulate root growth remains unknown. It is hypothesized that the K+ channel AKT1 is involved in low K+ sensing in the Arabidopsis root and subsequent regulation of root growth. Along with the decline of external K+ concentration, the primary root growth of wild‐type plants was gradually inhibited. However, the primary root of the akt1 mutant could still grow under low K+ (LK) conditions. Application of NAA inhibited akt1 root growth, but promoted wild‐type root growth under LK conditions. By using the ProDR5:GFP and ProPIN1:PIN1‐GFP lines, we found that LK treatment reduced auxin accumulation in wild‐type root tips by degrading PIN1 proteins, which did not occur in the akt1 mutant. The LK‐induced PIN1 degradation may be due to the inhibition of vesicle trafficking of PIN1 proteins. In conclusion, our findings indicate that AKT1 is required for an Arabidopsis response to changes in external K+, and subsequent regulation of K+‐dependent root growth by modulating PIN1 degradation and auxin redistribution in the root.  相似文献   

8.
This paper examines uncertainties in the interpretation of isotope signals when estimating fine root longevity, particularly in forests. The isotope signals are depleted δ13C values from elevated CO2 experiments and enriched Δ14C values from bomb 14C in atmospheric CO2. For the CO2 experiments, I explored the effects of six root mortality patterns (on–off, proportional, constant, normal, left skew, and right skew distributions), five levels of nonstructural carbohydrate (NSC) reserves, and increased root growth on root δ13C values after CO2 fumigation. My analysis indicates that fitting a linear equation to δ13C data provides unbiased estimates of longevity only if root mortality follows an on–off model, without dilution of isotope signals by pretreatment NSC reserves, and under a steady state between growth and death. If root mortality follows the other patterns, the linear extrapolation considerably overestimates root longevity. In contrast, fitting an exponential equation to δ13C data underestimates longevity with all the mortality patterns except the proportional one. With either linear or exponential extrapolation, dilution of isotope signals by pretreatment NSC reserves could result in overestimation of root longevity by several‐fold. Root longevity is underestimated if elevated CO2 stimulates fine root growth. For the bomb 14C approach, I examined the effects of four mortality patterns (on–off, proportional, constant, and normal distribution) on root Δ14C values. For a given Δ14C value, the proportional pattern usually provides a shorter estimate of root longevity than the other patterns. Overall, we have to improve our understanding of root growth and mortality patterns and to measure NSC reserves in order to reduce uncertainties in estimated fine root longevity from isotope data.  相似文献   

9.
Pea root elongation was strongly inhibited in the presence of a low concentration of Al (5 μM). In Al-treated root, the epidermis was markedly injured and characterized by an irregular layer of cells of the root surface. Approximately 30% of total absorbed Al accumulated in the root tip and Al therein was found to cause the inhibition of whole root elongation. Increasing concentrations of Ca2+ effectively ameliorated the inhibition of root elongation by Al and 1 mM of CaCl2 completely repressed the inhibition of root elongation by 50 μM Al. The ameliorating effect of Ca2+ was due to the reduction of Al uptake. H+-ATPase and H+-PPase activity as well as ATP and PPidependent H+ transport activity of vacuolar membrane vesicles prepared from barley roots increased to a similar extent by the treatment with 50 μM AlCl3. The rate of increase of the amount of H+-ATPase and H+-PPase was proportional to that of protein content measured by immunoblot analysis with antibodies against the catalytic subunit of the vacuolar H+-ATPase and H+-PPase of mung bean. The increase of both activities was discussed in relation to the physiological tolerance mechanism of barley root against Al stress.  相似文献   

10.
11.
Belowground dynamics of terrestrial ecosystems are responding to global increases in anthropogenic N deposition with important consequences for productivity and ecosystem health. We compared root characteristics across five root orders in Pinus tabuliformis plantations treated for 3 years to a gradient of N addition (0–15 g m?2 year?1). In reference plots, the roots of P. tabuliformis were finer and with higher specific root length than reported for other pine species, suggesting severe N limitation. Addition of N resulted in slightly reduced fine root biomass and significant changes in root morphology, responses that were associated primarily with first and second order roots. In particular, root number, cumulative root length, individual root length, and specific root length all declined with increasing N addition for first and second order roots, with most of the responses elicited at <9 g m?2 year?1 N addition. These responses (1) support the concept of ephemeral root modules consisting of first and second orders and (2) are consistent with a change in functional demand from uptake to transport with increasing soil resource availability. Traditionally, fine roots have been identified by a somewhat arbitrary diameter cut-off (e.g., 1 or 2 mm); as an index of fine root function, diameter would fail to reveal most of the functional response.  相似文献   

12.
J. Swinnen 《Plant and Soil》1994,165(1):89-101
A model rhizodeposition technique to estimate the root and microbial components of 14C soil/root respiration in pulse-labelling experiments is described. The method involves the injection of model rhizodeposits, consisting of 14C-labelled glucose, root extract or root cell wall material, into the rooted soil of an unlabelled plant, simultaneously with the pulse-labelling of a separate but similar plant with 14CO2. In a growth chamber experiment with 30 day old wheat and barley the contribution of direct root respiration to 14C soil/root respiration over a 26 day period after labelling was estimated 89–95%. Estimates of direct root respiration in field-grown wheat and barley at different development stages in most cases accounted for at least 75% of 14C soil/root respiration over a 21 day period after labelling. The mineralization rate of injected 14C-glucose was positively correlated with the concentration of glucose-C established in soil. The use of the method in rhizosphere carbon budget estimations is evaluated. Communication No. 73 of the Dutch Programme on Soil Ecology of Arable Farming Systems. Communication No. 73 of the Dutch Programme on Soil Ecology of Arable Farming Systems.  相似文献   

13.
In this study, confocal ratio analysis was used to image the relationship between cytoplasmic free calcium concentration ([Ca2+]c) and the development of root hairs of Arabidopsis thaliana. Although a localized change in [Ca2+]c that preceded or predicted the site of root hair initiation could not be detected, once initiated the majority of emerging root hairs showed an elevated [Ca2+]c (>1 μM) in their apical cytoplasm, compared with 100– 200 nM in the rest of the cell. These emerging root hairs then moved into a 3–5 h phase of sustained elongation during which they showed variable growth rates. Root hairs that were rapidly elongating exhibited a highly localized, elevated [Ca2+]c at the tip. Non-growing root hairs did not exhibit the [Ca2+]c gradient. The rhd-2 mutant, which is defective in sustained root hair growth, showed an altered [Ca2+]c distribution compared with wild-type. These results implicate [Ca2+]c in regulating the tip growth process. Treatment of elongating wild-type root hairs with the Ca2+ channel blocker verapamil (50 μM) caused dissipation of the elevated [Ca2+]c at the tip and cessation of growth, suggesting a requirement for Ca2+ channel activity at the root hair tip to maintain growth. Manganese treatment also preferentially quenched Indo-1 fluorescence in the apical cytoplasm of the root hair. As manganese is thought to enter cells through Ca2+-permeable channels, this result also suggests increased Ca2+ channel activity at the tip of the growing hair. Taken together, these data suggest that although Ca2+ does not trigger the initiation of root hairs, Ca2+ influx at the tip of the root hair leads to an elevated [Ca2+]c that may be required to sustain root hair elongation.  相似文献   

14.
The effect of low pH on net H+ release and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.) seedlings was investigated in short-term experiments at constant pH. Broad bean was more sensitive to low pH than corn: the critical values (pH values below which net H+ release and root growth ceased) were pH 4.00 (broad bean) and pH 3.50 (corn) at 1 millimolar Ca2+. Both proton release and root growth were progressively inhibited as the medium pH declined. Additional Ca2+ in the root medium helped to overcome the limitations of low pH for net H+ release and root growth. Potassium (for corn) and abscisic acid (for broad bean) increased both net H+ release and root growth rate at the critical pH value. It is concluded that poor root growth at low pH is caused by a lack of net H+ release that may decrease cytoplasmic pH values. Inhibited net H+ release at high external H+ activity is not due to a shortage of energy supply to the H+ ATPase. Instead, a displacement of Ca2+ by H+ at the external side of the plasmalemma may enhance reentry of H+ into root cells.  相似文献   

15.
为了解氮肥和钙肥对烤烟(Nicotiana tabacum)生长的影响,对成熟期烤烟的根系形态、生理代谢指标和产量进行了研究。结果表明,与施0.12 g kg-1氮相比,施0.20 g kg-1氮的烤烟根系最长侧根长、根系体积、根干重、叶干重和可溶性蛋白质含量均极显著升高,MDA含量极显著下降,SOD活性显著下降,但对侧根数、CAT活性和O2·的影响均不显著。施钙0.40 g kg-1,根系体积、侧根数、CAT和SOD活性以及可溶性蛋白质含量均比对照提高,MDA含量和O2·则降低;施钙1.00 g kg-1,最长侧根长、根干重和叶干重均提高。氮×钙互作对烤烟的最长侧根长、根系体积、根干重、叶干重和生理代谢指标的影响均极显著,但对侧根数的影响不显著。因此,施0.20 g kg-1氮和0.40 g kg-1钙能最大限度地改善烤烟根系形态、生理状况及提高产量。  相似文献   

16.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

17.
Phosphorus efficiency of plants   总被引:1,自引:0,他引:1  
Föhse et al. (1988) have shown that P influx per unit root length in seven plant species growing in a low-P soil varied from 0.6×10-14 to 4.8×10-14 mol cm-1s-1. The objective of this work was to investigate the reasons for these differences. No correlation was found between P influx and root radius, root hairs, cation-anion balance and Ca uptake. However, when root hairs were included in mathematical model calculations, the differences of P influx could be accounted for. These calculations have shown that in soils low in available P, contribution to P uptake by root hairs was up to 90% of total uptake. The large contribution of root hairs to P uptake was partly due to their surface area, which was similar to that of the root cylinder. However, the main reason for the high P uptake efficiency of root hairs was their small radius (approx. 5×10-4 cm) and their perpendicular growth into the soil from the root axis. Because of the small radius compared to root axes, P concentration at root hair surfaces decreased at a slower pace and therefore P influx remained higher. Under these conditions higher Imax (maximum influx) or smaller Km values (Michaelis constant) increased P influx. The main reasons for differences found in P influx among species were the size of Imax and the number and length of root hairs. In a soil low in available P, plant species having more root hairs were able to satisfy a higher proportion of their P demand required for maximum growth.  相似文献   

18.
1-Naphthaleneacetic acid (NAA) in the medium strongly inhibited horseradish hairy root elongation. In hatch culture, NAA in the medium was absorbed by the root at the beginning of the culture (0–4 d). After the depletion of NAA, root apical meristems emerged, and then the growth rate of the root increased dramatically. The batch culture with 1 × 10−3 kg/m3 of NAA reached the highest biomass, 10.9 kg-dry weight/m3 at 21 d. Modification of a kinetic model previously developed resulted in a favorable fit with the growth curve of horseradish hairy root treated with NAA. Furthermore, in repeated batch culture, the NAA-treated root culture exhibited a 1.7-fold increase in dry weight, 57 kg/m3 at 40 d, compared with that of no NAA-treated root. The modified kinetic model also correlated well with the experimental results in repeated batch culture.  相似文献   

19.

Aims

The mechanisms of belowground competition are not well understood. Addressing literature reports on competition-induced changes in tree fine root morphology, we conducted a growth experiment with tree saplings to investigate competition effects on important root morphological and functional traits in a root order-focused analysis.

Methods

European beech and European ash saplings were grown for 34 months in containers under greenhouse conditions in monoculture (2 conspecific plants), in mixture (1 beech and 1 ash) or as single plants. The root system was fractionated according to root orders and eight morphological and functional properties were determined.

Results

Root order was the most influential factor affecting the fine root traits (except for root diameter and δ13C); a significant species identity effect was found for root diameter, tissue density, N concentration and δ13C. Ash fine roots were thicker, but had lower tissue densities, contained more N and had systematically higher δ13C values than beech roots. The competition treatments had no significant effect on morphological root traits but altered δ13C in the 2nd root order.

Conclusion

Neither intra- nor interspecific root competition affected fine root morphology significantly suggesting that competition-induced root modification may not be a universal phenomenon in temperate trees.  相似文献   

20.
翠菊根系养分捕获形态塑性及其生理机制   总被引:1,自引:1,他引:0       下载免费PDF全文
董佳  牟溥 《植物生态学报》2012,36(11):1172-1183
为验证以下3个假设: 1) NO3 -和NH4 +及其不同供给方式显著影响根系生长; 2) NO3 -和NH4 +以及不同供给方式对根内激素含量影响显著; 3)根构型(1级根长、单位2级根上1级侧根密度(分枝强度)和1级根在2级根上的根间距)与根内激素(生长素(IAA)、脱落酸(ABA)和细胞分裂素(玉米素核苷+玉米素) (CK (ZR + Z))含量显著相关, 采用营养液培养方法, 使实验植物翠菊(Callistephus chinensis)在两种氮肥(NO3 -和NH4 +)、不同施氮浓度(NO3 -: 0.2、1.0和18.0 mmol·L -1; NH4 +: 0.2、4.0和20.0 mmol·L -1), 以及脉冲和稳定两种施用方式处理下生长。在处理35天后收获植物, 测定根系生物量、根系构型指标(根系1级根长、单位2级根上1级侧根数和1级根在2级根上的根间距)和根系中激素含量(IAA、ABA和CK (ZR + Z))。结果显示: 1)实验处理对根生物量和根系中IAA、ABA和CK (ZR + Z)含量均有不同程度的显著影响: 施用NH4 +使根生物量和根内IAA含量显著低于施用NO3 -; 高浓度NO3 -和NH4 +处理亦使根生物量和IAA降低; 相对于稳定处理, 脉冲施氮显著降低根生物量和根内IAA含量; NO3 -使根内CK (ZR + Z)含量显著高于施用NH4 +, 且与施氮浓度及施氮方式无关; NO3 -处理下, 高浓度使根内ABA含量提高, 且脉冲处理使ABA含量升高。NH4 +处理下, 高浓度使根内ABA含量降低, 而施氮方式对其没有显著影响。2)根构型因素与根内激素关系各异: 各激素与1级根间距无显著关系; IAA和CK (ZR + Z)与1级根长和侧根密度有显著回归关系。3)根构型因素与根生物量的关系是根生物量与1级根长和侧根密度有显著正回归关系, 与1级根间距无显著回归关系。实验结果表明翠菊根生长的 “反常”可能是由于其对脉冲高浓度NH4 +耐受阈值低所致。该研究通过实验建立了氮养分种类/供应方式通过改变激素、影响根构型而影响根生长的联系, 进一步探究了植物根养分捕获塑性机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号