首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic.  相似文献   

2.
The deleterious effects of inbreeding have been well documented, but only recently have studies begun to explore the consequences of inbreeding for important ecological interactions. We examined the effects of inbreeding on the interaction between host and pathogen using the mixed-mating Mimulus guttatus (Scrophulariaceae) and Cucumber mosaic virus (CMV). Inbred (self) and outbred M. guttatus from two California populations (M5 and M13) were rub-inoculated with CMV and compared to sham-inoculated controls. Flower production by outbred plants in host population M5 showed little effect of the inoculation treatment, but inoculation reduced flower production of inbred plants by 12%, indicating that inbreeding reduces tolerance to CMV infection. This interaction fell short of significance, however. The effects of inbreeding and CMV inoculation on biomass in M5 varied significantly across the 15 families used in this experiment, indicating genetic variation in the effect of inbreeding on resistance or tolerance to CMV. CMV infection reduced biomass in host population M13, but there were no significant interactions between virus treatment and level of inbreeding for either flower production or biomass. Enzyme linked immunosorbent assay (ELISA) was used to detect CMV in host tissues. In both populations, mean ELISA absorbance values of inoculated plants were nearly identical for self and outcross hosts, indicating equal susceptibility to CMV. In outbred plants of population M5, flower production did not change with increasing ELISA absorbance, but in inbred plants it declined, indicating reduced tolerance to CMV infection. The results from this study suggest that pathogens may become increasingly detrimental as host populations become more inbred.  相似文献   

3.
Inbreeding often has negative fitness consequences for primates, which have led to the evolution of inbreeding avoidance strategies in a number of species. In polygynous primates, females may suffer a higher fitness cost from inbreeding than males and are thus expected to exhibit a lower tolerance for inbreeding. Nevertheless, it is apparent that inbreeding avoidance behaviours are common in both female and male polygynous primates. In this perspectives article, I review the evidence that female mate choice can lead to male inbreeding avoidance behaviours in polygynous primates. I conclude that male inbreeding avoidance may be strongly driven by female mate choice at both proximate and ultimate levels. To better understand the extent to which this pattern applies across the primate order, studies are needed on the separate effects of participating in inbred matings and producing inbred offspring on male and female lifetime reproductive success . It would also be useful to examine how inbreeding avoidance strategies vary across primate mating systems. Finally, measuring the covariance between female choice and male inbreeding avoidance behaviour, and between male inbreeding avoidance behaviour and male fitness, would help to clarify the role of female mate choice in the evolution of male inbreeding avoidance.  相似文献   

4.
Genetic compatibility, nonspecific defenses, and environmental effects determine parasite resistance. Host mating system (selfing vs. outcrossing) should be important for parasite resistance because it determines the segregation of alleles at the resistance loci and because inbreeding depression may hamper immune defenses. Individuals of a mixed mating hermaphroditic freshwater snail, Lymnaea ovata, are commonly infected by a digenetic trematode parasite, Echinoparyphium recurvatum. We examined covariation between quantitative resistance to novel parasites and mating system by exposing snail families from four populations that differed by their inbreeding coefficients. We found that resistance was unrelated to inbreeding coefficient of the population, suggesting that the more inbred populations did not carry higher susceptibility load than the less inbred populations. Most of the variation in resistance was expressed among the families within the populations. In the population with the lowest inbreeding coefficient, resistance increased with outcrossing rate of the family, as predicted if selfing had led to inbreeding depression. In the other three populations with higher inbreeding coefficients, resistance was unrelated to outcrossing rate. The results suggest that in populations with higher inbreeding some of the genetic load has been purged, uncoupling the predicted relationship between outcrossing rate and resistance. Snail families also displayed crossing reaction norms for resistance when tested in two environments that presented low and high immune challenge, suggesting that genotype-by-environment interactions are important for parasite resistance.  相似文献   

5.

Background and Aims

Inbreeding via self-fertilization may have negative effects on plant fitness (i.e. inbreeding depression). Outbreeding, or cross-fertilization between genetically dissimilar parental plants, may also disrupt local adaptation or allelic co-adaptation in the offspring and again lead to reduced plant fitness (i.e. outbreeding depression). Inbreeding and outbreeding may also increase plant vulnerability to natural enemies by altering plant quality or defence. The effects of inbreeding and outbreeding on plant size and response to herbivory in the perennial herb, Vincetoxicum hirundinaria, were investigated.

Methods

Greenhouse experiments were conducted using inbred and outbred (within- and between-population) offspring of 20 maternal plants from four different populations, quantifying plant germination, size, resistance against the specialist folivore, Abrostola asclepiadis, and tolerance of simulated defoliation.

Key Results

Selfed plants were smaller and more susceptible to damage by A. asclepiadis than outcrossed plants. However, herbivore biomass on selfed and outcrossed plants did not differ. The effects of inbreeding on plant performance and resistance did not differ among plant populations or families, and no inbreeding depression at all was found in tolerance of defoliation. Between-population outcrossing had no effect on plant performance or resistance against A. asclepiadis, indicating a lack of outbreeding depression.

Conclusions

Since inbreeding depression negatively affects plant size and herbivore resistance, inbreeding may modify the evolution of the interaction between V. hirundinaria and its specialist folivore. The results further suggest that herbivory may contribute to the maintenance of a mixed mating system of the host plants by selecting for outcrossing and reduced susceptibility to herbivore attack, and thus add to the growing body of evidence on the effects of inbreeding on the mating system evolution of the host plants and the dynamics of plant–herbivore interactions.  相似文献   

6.
The inbreeding avoidance hypothesis predicts that organisms that often encounter relatives as potential mates should evolve behaviours to avoid incestuous matings. Avoidance behaviours have practical importance for small populations because deleterious genetic processes may be less imminent than otherwise expected from genetic models that assume random mating. I used genetic techniques to investigate the extent of inbreeding and inbreeding avoidance behaviours in rare lizards from southern New Zealand. Grand skinks, Oligosoma grande, live in small patchily distributed groups, and have low rates of inter-group dispersal (ca. 3–20% disperse). I used data from 15 microsatellite loci to test the hypothesis that adults are likely to encounter kin as potential mates and will inbreed. These data showed that adult skinks usually inhabited rock outcrops with adult relatives of the opposite sex – up to 35% of potential mates were of equivalent relatedness as half-sibs and 17% were equivalent to full sibs. However, skinks did not preferentially breed with less related mates, and 18.2% of matings were between individuals of equivalent relatedness as full-sibs. Instead, skinks mated with partners of all levels of relatedness, and were promiscuous – almost half of adult females and nearly three quarters of adult males reproduced with multiple partners. In addition, inbreeding had no effect on survival of offspring in their first year. Two other putative mechanisms of inbreeding avoidance, sex-biased and natal dispersal, were not pronounced in this species. This study adds to a growing list of species that inbreed despite the risks.  相似文献   

7.
Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex‐biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free‐ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free‐ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.  相似文献   

8.
Parasites are thought to provide a selective force capable of promoting genetic variation in natural populations. One rarely considered pathway for this action is via parasite-mediated selection against inbreeding. If parasites impose a fitness cost on their host and the offspring of close relatives have greater susceptibility to parasites due to the increased homozygosity that results from inbreeding, then parasite-mediated mortality may select against inbred individuals. This hypothesis has not yet been tested within a natural vertebrate population. Here we show that relatively inbred Soay sheep (Ovis aries), as assessed by microsatellite heterozygosity, are more susceptible to parasitism by gastrointestinal nematodes, with interactions indicating greatest susceptibility among adult sheep at high population density. During periods of high overwinter mortality on the island of Hirta, St. Kilda, Scotland, highly parasitised individuals were less likely to survive. More inbred individuals were also less likely to survive, which is due to their increased susceptibility to parasitism, because survival was random with respect to inbreeding among sheep that were experimentally cleared of their gastrointestinal parasite burden by anthelminthic treatment. As a consequence of this selection, average microsatellite heterozygosity increases with age in St. Kildan Soay sheep. We suggest that parasite-mediated selection acts to maintain genetic variation in this small island population by removing less heterozygous individuals.  相似文献   

9.
Reduced genetic diversity through inbreeding can negatively affect pathogen resistance. This relationship becomes more complicated in social species, such as social insects, since the chance of disease transmission increases with the frequency of interactions among individuals. However, social insects may benefit from social immunity, whereby individual physiological defenses may be bolstered by collective‐level immune responses, such as grooming or sharing of antimicrobial substance through trophallaxis. We set out to determine whether differences in genetic diversity between colonies of the subterranean termite, Reticulitermes flavipes, accounts for colony survival against pathogens. We sampled colonies throughout the United States (Texas, North Carolina, Maryland, and Massachusetts) and determined the level of inbreeding of each colony. To assess whether genetically diverse colonies were better able to survive exposure to diverse pathogens, we challenged groups of termite workers with two strains of a pathogenic fungus, one local strain present in the soil surrounding sampled colonies and another naïve strain, collected outside the range of this species. We found natural variation in the level of inbreeding between colonies, but this variation did not explain differences in susceptibility to either pathogen. Although the naïve strain was found to be more hazardous than the local strain, colony resistance was correlated between two strains, meaning that colonies had either relatively high or low susceptibility to both strains regardless of their inbreeding coefficient. Overall, our findings may reflect differential virulence between the strains, immune priming of the colonies via prior exposure to the local strain, or a coevolved resistance toward this strain. They also suggest that colony survival may rely more upon additional factors, such as different behavioral response thresholds or the influence of a specific genetic background, rather than the overall genetic diversity of the colony.  相似文献   

10.
Parasitoid sex ratios are influenced by mating systems, whether complete inbreeding, partial inbreeding, complete inbreeding avoidance, or production of all-male broods by unmated females. Population genetic theory demonstrates that inbreeding is possible in haplodiploids because the purging of deleterious and lethal mutations through haploid males reduces inbreeding depression. However, this purging does not act quickly for deleterious mutations or female-limited traits (e.g., fecundity, host searching, sex ratio). The relationship between sex ratio, inbreeding, and inbreeding depression has not been explored in depth in parasitoids. The gregarious egg parasitoid, Trichogramma pretiosum Riley, collected from Riverside, CA (USA) produced a female-biased sex ratio of 0.24 (proportion of males). Six generations of sibling mating in the laboratory uncovered considerable inbreeding depression (∼ 20%) in fecundity and sex ratio. A population genetic study (based upon allozymes) showed the population was inbred (F it = 0.246), which corresponds to 56.6% sib-mating. However, average relatedness among females emerging from the same host egg was only 0.646, which is less than expected (0.75) if ovipositing females mate randomly. This lower relatedness could arise from inbreeding avoidance, multiple mating by females, or superparasitism. A review of the literature in general shows relatively low inbreeding depression in haplodiploid species, but indicates that inbreeding depression can be as high as that found in Drosophila. Finally, mating systems and inbreeding depression are thought to evolve in concert (in plants), but similar dynamic models of the joint evolution of sex ratio, mating systems, and inbreeding depression have not been developed for parasitoid wasps. Received: November 13, 1998 /Accepted: January 8, 1999  相似文献   

11.
Recombinant congenic strains (RCS) constitute a set of inbred strains which are designed to dissect the genetic control of multigenic traits, such as tumour susceptibility or disease resistance. Each RCS contains a small fraction of the genome of a common donor strain, while the majority of genes stem from a common background strain. We tested at two stages of the inbreeding process in 20 RCS, derived from BALB/cHeA and STS/A, to see whether alleles from the STS/A donor strain are distributed over the RCS in a ratio as would theoretically be expected. Four marker genes (Pep-3; Pgm-1; Gpi-1 and Es-3) located at 4 different chromosomes were selected and the allelic distribution was tested after 3-4 and after 12 generations of inbreeding. The data obtained do not significantly deviate from the expected pattern, thus supporting the validity of the concept of RCS.  相似文献   

12.
Hookworms are intestinal blood-feeding nematodes that parasitize and cause high levels of mortality in a wide range of mammals, including otariid pinnipeds. Recently, an empirical study showed that inbreeding (assessed by individual measures of multi-locus heterozygosity) is associated with hookworm-related mortality of California sea lions. If inbreeding increases susceptibility to hookworms, effects would expectedly be stronger in small, fragmented populations. We tested this assumption in the New Zealand sea lion, a threatened otariid that has low levels of genetic variability and high hookworm infection rates. Using a panel of 22 microsatellites, we found that average allelic diversity (5.9) and mean heterozygosity (0.72) were higher than expected for a small population with restricted breeding, and we found no evidence of an association between genetic variability and hookworm resistance. However, similar to what was observed for the California sea lion, homozygosity at a single locus explained the occurrence of anaemia and thrombocytopenia in hookworm-infected pups (generalized linear model, F = 11.81, p < 0.001) and the effect was apparently driven by a particular allele (odds ratio = 34.95%; CI: 7.12–162.41; p < 0.00001). Our study offers further evidence that these haematophagus parasites exert selective pressure on otariid blood-clotting processes.  相似文献   

13.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

14.
Population ecology of intestinal helminth infections in human communities   总被引:2,自引:0,他引:2  
The distribution of worm burdens in human populations is a major determinant of both the dynamics of transmission and the level of community morbidity. The distribution exhibits convexity with host age, which appears to correlate with exposure in the young age-classes but not in adults, and may be evidence for the development of an acquired immune response. The distribution between individuals is typically overdispersed. Individuals are predisposed to high (or low) intensity of infection and to a correspondingly high (or low) rate of acquisition of infection. A major epidemiological question is whether this reflects individual differences in environmental exposure or susceptibility. Environmental studies that have observed clustering of intense infection in particular households are supportive of either mechanism. Individual host behaviours that predispose to infection have an overdispersed distribution and may alone, or as compounding factors, generate the observed distribution of infection intensity. Factors such as host nutrition and physiology may modify host immune-responsiveness and hence susceptibility. Preliminary evidence suggests correlates between infection intensity and HLA class II antigens, and tentatively implies a genetic factor in susceptibility. These findings suggest that further understanding of the relative importance of environmental factors and resistance to the acquisition of intense infection is dependent upon a multidisciplinary approach to epidemiological field study.  相似文献   

15.
BackgroundThe development of insecticide resistance in mosquitoes can have pleiotropic effects on key behaviours such as mating competition and host-location. Documenting these effects is crucial for understanding the dynamics and costs of insecticide resistance and may give researchers an evidence base for promoting vector control programs that aim to restore or conserve insecticide susceptibility.Methods and findingsWe evaluated changes in behaviour in a backcrossed strain of Aedes aegypti, homozygous for two knockdown resistance (kdr) mutations (V1016G and S989P) isolated in an otherwise fully susceptible genetic background. We compared biting activity, host location behaviours, wing beat frequency (WBF) and mating competition between the backcrossed strain, and the fully susceptible and resistant parental strains from which it was derived. The presence of the homozygous kdr mutations did not have significant effects on blood avidity, the time to locate a host, or WBF in females. There was, however, a significant reduction in mean WBF in males and a significant reduction in estimated male mating success (17.3%), associated with the isolated kdr genotype.ConclusionsOur results demonstrate a cost of insecticide resistance associated with an isolated kdr genotype and manifest as a reduction in male mating success. While there was no recorded difference in WBF between the females of our strains, the significant reduction in male WBF recorded in our backcrossed strain might contribute to mate-recognition and mating disruption. These consequences of resistance evolution, especially when combined with other pleiotropic fitness costs that have been previously described, may encourage reversion to susceptibility in the absence of insecticide selection pressures. This offers justification for the implementation of insecticide resistance management strategies based on the rotation or alternation of different insecticide classes in space and time.  相似文献   

16.
ABSTRACT: BACKGROUND: The establishment of compatibility between plants and pathogens requires compliance with various conditions, such as recognition of the right host, suppression of defence mechanisms, and maintenance of an environment allowing pathogen reproduction. To date, most of the plant factors required to sustain compatibility remain unknown, with the few best characterized being those interfering with defense responses. A suitable system to study host compatibility factors is the interaction between Arabidopsis thaliana and the powdery mildew (PM) Golovinomyces cichoracearum. As an obligate biotrophic pathogen, this fungus must establish compatibility in order to perpetuate. In turn, A. thaliana displays natural variation for susceptibility to this invader, with some accessions showing full susceptibility (Col-0), and others monogenic dominant resistance (Kas-1). Interestingly, Te-0, among other accessions, displays recessive partial resistance to this PM. RESULTS: In this study, we characterized the interaction of G. cichoracearum with Te-0 plants to investigate the basis of this plant resistance. We found that Te-0[ACUTE ACCENT]s incompatibility was not associated with hyper-activation of host inducible defences, Te-0 plants allowed germination of conidia and development of functional haustoria, but could not support the formation of mature conidiophores. Using a suppressive subtractive hybridization technique, we identified plant genes showing differential expression between resistant Te-0 and susceptible Col-0 plants at the fungal pre-conidiation stage. CONCLUSIONS: Te-0 resistance is likely caused by loss of host compatibility and not by stimulation of inducible defenses. Conidiophores formation is the main constraint for completion of fungal life cycle in Te-0 plants. The system here described allowed the identification of genes proposed as markers for susceptibility to this PM.  相似文献   

17.
We assessed the expected relationship between the level and the cost of inbreeding, measured either in terms of fitness, inbreeding depression or probability of extinction. First, we show that the assumption of frequent, slightly deleterious mutations do agree with observations and experiments, on the contrary to the assumption of few, moderately deleterious mutations. For the same inbreeding coefficient, populations can greatly differ in fitness according to the following: (i) population size; larger populations show higher fitness (ii) the history of population size; in a population that recovers after a bottleneck, higher inbreeding can lead to higher fitness and (iii) population demography; population growth rate and carrying capacity determine the relationship between inbreeding and extinction. With regards to the relationship between inbreeding depression and inbreeding coefficient, the population size that minimizes inbreeding depression depends on the level of inbreeding: inbreeding depression can even decrease when population size increases. It is therefore clear that to infer the costs of inbreeding, one must know both the history of inbreeding (e.g. past bottlenecks) and population demography.  相似文献   

18.
Previous studies have demonstrated genetic variation for resistance to insect herbivores and host plant quality. The effect of plant mating system, an important determinant of the distribution of genetic variation, on host plant characteristics has received almost no attention. This study used a controlled greenhouse experiment to examine the effect of self- and cross-pollination in Mimulus guttatus (Scrophulariaceae) on resistance to and host plant quality for the xylem-feeding spittlebug Philaenus spumarius (Homoptera: Cercopidae). Spittlebugs were found to have a negative effect on two important fitness components in M. guttatus, flower production and above ground biomass. One of two M. guttatus populations examined showed a significant interaction between the pollination and herbivore treatments. In this case, the detrimental effects of herbivores on biomass and flower production were much more pronounced in inbred (self) plants. The presence of spittlebug nymphs increased inbreeding depression by as much as three times. Pollination treatments also had significant effects on important components of herbivore fitness, but these effects were in opposite directions in our two host plant populations. Spittlebug nymphs maturing on self plants emerged as significantly larger adults in one of our host plant populations, indicating that inbreeding increased host plant quality. In our second host plant population, spittlebug nymphs took significantly longer to develop to adulthood on self plants, indicating that inbreeding decreased host plant quality. Taken together these results suggest that the degree of inbreeding in host plant populations can have important and perhaps complex effects on the dynamics of plant-herbivore interactions and on mating-system evolution in the host.  相似文献   

19.
Genetic variation for parasite resistance occurs in most host populations. Costs of resistance, manifested as reduced fitness of resistant genotypes in the absence of parasitism, can be an important factor contributing to the maintenance of this variation. One powerful tool for detecting costs of resistance is the study of correlated responses to artificial selection. Provided that experimental lines are recently derived from large outbreeding populations, and that inbreeding is minimized during the experiment, correlated responses to selection are expected to be strong indicators of pleiotropy. We artificially selected for elevated behavioral resistance against an ectoparasitic mite (Macrocheles subbadius) in replicate populations of the fly Drosophila nigrospiracula. Resistance was modeled as a threshold trait, and the realized heritability of resistance was estimated to be 12.3% (1.4% SE) across three replicate lines recently derived from nature. We contrasted the longevity and fecundity of resistant and control (unselected) flies under a variable thermal environment. We report that reduced fecundity is a correlated response to artificial selection for increased resistance, and that the strength of this effect increases from 25 degrees to 29 degrees C. In contrast, longevity differences were not detected between resistant and control lines at either temperature. These findings are robust as they were confirmed with an independent set of experimental lines. Thus, our results identify a negative genetic correlation between ectoparasite resistance and an important life-history trait. That a correlated response was only detected for fecundity, and not longevity, suggests that the genetic correlation is attributable to pleiotropic effects with narrower effects than reallocation of a general resource pool within the organism, although other interpretations are discussed. Combined with fluctuating parasite-mediated selection and temperature, the presence of this trade-off may contribute to the maintenance of genetic variation for resistance in natural populations.  相似文献   

20.
Behavioural inbreeding avoidance in wild African elephants   总被引:3,自引:2,他引:1  
The costs of inbreeding depression, as well as the opportunity costs of inbreeding avoidance, determine whether and which mechanisms of inbreeding avoidance evolve. In African elephants, sex-biased dispersal does not lead to the complete separation of male and female relatives, and so individuals may experience selection to recognize kin and avoid inbreeding. However, because estrous females are rare and male-male competition for mates is intense, the opportunity costs of inbreeding avoidance may be high, particularly for males. Here we combine 28 years of behavioural and demographic data on wild elephants with genotypes from 545 adult females, adult males, and calves in Amboseli National Park, Kenya, to test the hypothesis that elephants engage in sexual behaviour and reproduction with relatives less often than expected by chance. We found support for this hypothesis: males engaged in proportionally fewer sexual behaviours and sired proportionally fewer offspring with females that were natal family members or close genetic relatives (both maternal and paternal) than they did with nonkin. We discuss the relevance of these results for understanding the evolution of inbreeding avoidance and for elephant conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号