首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-density lipoproteins (LDL) mildly oxidized by copper ions or UV radiations exhibit a cytotoxic effect to cultured endothelial cells. Rutin, a polyphenolic flavonoid, ascorbic acid, and α-tocopherol were able to inhibit the peroxidation of LDL and their subsequent cytotoxicity. The mixture of the three compounds (rutin/ascorbic acid/α-tocopherol, 4/4/1) exhibited a supra-additive antioxidant effect. The inhibition of the cytotoxic effect was well correlated with that of TBARS formation. Another important conclusion is that these antioxidants were able to prevent directly at the cellular level the cytotoxic effect of oxidized LDL, since cells preincubated with them were protected against the cytotoxic effect of previously oxidized LDL. The protective effect of antioxidants was limited because of their own toxicity. The antioxidant mixture permitted a maximal cytoprotective effect with relatively lower concentrations to be obtained and the cytotoxicity of high concentrations to be avoided. In conclusion, rutin, ascorbic acid, and α-tocopherol constitute two lines of defense in protecting cells against injury owing to oxidation of LDL (1) at the LDL level, by inhibiting the LDL oxidation and the subsequent cytotoxicity, and (2) at the cellular level, by protecting the cells directly, i.e., by increasing their resistance against the cytotoxic effect of oxidized LDL.  相似文献   

2.
This article puts forward the hypothesis that the Low Density Lipid Receptor (LDLR) is one of the molecules that is involved in the clearance of amyloid proteins in the brain and that it may play a role in Alzheimer’s Disease (AD) via its up-regulation by statins. The hypothesis is built on the following observations: a-statins (which have been shown to increase LDLR in astrocytes, see below) have a beneficial role in AD, b-defects in the LDL receptor gene are found in AD, c-molecules with similar structure to the LDLR have been shown to clear amyloid protein from the brain.  相似文献   

3.
根据低密度脂蛋白(low density lipoprotein,LDL)颗粒的不均一性,可以利用密度梯度超速离心法和梯度凝胶电泳法将其分成若干亚组分。近年来,对于LDL亚组分分离方法的研究取得了显著进展。除对上述两种基本实验方法进行改进外,有实验室采用Western印迹法对LDL颗粒进行分离。LDL亚组分分离方法的进步,使对LDL亚组分的认识更加深入:LDL亚组分的高度不均一性、氧化易感性及电负性等不同特性与动脉粥样硬化(atherosclerosis,AS)关系密切。LDL亚组分的研究为认识动脉粥样硬化及其相关疾病提供了重要的理论依据。  相似文献   

4.
5.
LDL的氧化修饰和氧化修饰LDL的组成和结构变化   总被引:8,自引:1,他引:7  
陈瑗  周玫 《生物物理学报》1993,9(2):334-340
与低密度脂蛋白(LDL)相比,氧化修饰LDL(O-LDL)的组成、结构和生物学特性发生了深刻的变化,而组成和结构的改变是生物学特性改变的基础.本文根据最近文献资料.结合我们实验室的工作.对LDL的氧化修饰、O-LDL的组成、结构改变,以及它们的机理作一简要综述.  相似文献   

6.
动脉粥样硬化是导致心血管疾病发生的最重要因素。血液中低密度脂蛋白(LDL)浓度过高是引起动脉粥样硬化的主要原因。体外去除法是目前降低LDL浓度最有效的方法之一,吸附材料是影响LDL体外去除法降低LDL浓度效果的关键。阴离子型吸附材料是一种常用的吸附材料,因选材广泛、吸附效果佳备受关注,由发挥吸附功能的阴离子化合物配基和承载配基的载体基材组成,通过阴离子所带的负电荷与带正电的LDL产生特异性吸附。根据配基分子大小,阴离子型吸附材料主要分为大分子阴离子型和小分子阴离子型吸附材料,本文总结了国内外的阴离子型吸附材料主要研究现状及发展趋势。  相似文献   

7.
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( ? )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( ? )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( ? )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( ? )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.  相似文献   

8.
Osteoporosis is a complex disease that affects >10 million people in the United States and results in 1.5 million fractures annually. In addition, the high prevalence of osteopenia (low bone mass) in the general population places a large number of people at risk for developing the disease. In an effort to identify genetic factors influencing bone density, we characterized a family that includes individuals who possess exceptionally dense bones but are otherwise phenotypically normal. This high–bone-mass trait (HBM) was originally localized by linkage analysis to chromosome 11q12-13. We refined the interval by extending the pedigree and genotyping additional markers. A systematic search for mutations that segregated with the HBM phenotype uncovered an amino acid change, in a predicted β-propeller module of the low-density lipoprotein receptor–related protein 5 (LRP5), that results in the HBM phenotype. During analysis of >1,000 individuals, this mutation was observed only in affected individuals from the HBM kindred. By use of in situ hybridization to rat tibia, expression of LRP5 was detected in areas of bone involved in remodeling. Our findings suggest that the HBM mutation confers a unique osteogenic activity in bone remodeling, and this understanding may facilitate the development of novel therapies for the treatment of osteoporosis.  相似文献   

9.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

10.
Carotenoids are dietary antioxidants transported with plasma lipoproteins, primarily low-density lipoprotein (LDL). In this study in vitro methods were used to increase the amounts of specific, individual carotenoids in LDL. By addition of carotenoid to isolated LDL or to serum, followed by (re)isolation of the lipoproteins, samples of LDL were enriched 4- to 150-fold with lutein, 2- to 15-fold with lycopene, or 3- to 25-fold with β-carotene. Enrichment with specific carotenoids was achieved without affecting the electrophoretic mobility of the lipoprotein, its cholesterol to protein ratio, or the levels of other cartenoids or -tocopherol. The distributions among lipoproteins of carotenoid added to serum were similar, but not identical, to the distributions of the endogenous carotenoids. In particular, for added lutein, a greater proportion was found in HDL, and for added β-carotene, more was found in very low-density lipoprotein (VLDL). We then studied the effect of enriching LDL with specific carotenoids on its susceptibility to oxidation by copper ions. Lutein, β-cryptoxanthin, lycopene, and β-carotene, the four major plasma carotenoids, and -tocopherol were destroyed before the formation of lipid peroxidation products. The rates of destruction of the individual carotenoids differed; lycopene was destroyed most rapidly and lutein most slowly. Upon oxidation of β-carotene-enriched LDL, the rates of destruction of β-carotene, lycopene, and lutein were slowed and the lag times before the initiation of lipid peroxidation increased from 19 to 65 min. Neither effect was observed in LDL enriched with lutein or lycopene. Thus, β-carotene was unique among the carotenoids studied in having a small, but significant effect on LDL oxidation in vitro.  相似文献   

11.
12.
应用人血清清蛋白代替LDS,建立了肝素释放细胞表面与受体结合的LDL的方法,并比较了人及家兔LDL结合家兔细胞表面受体的能力。在37℃不同保温时间(从0—180分钟),肝素释放的细胞表面受体~(125)I-LDL量增加缓慢而通过受体进入细胞的LDL量增加迅速。在37℃以不同剂量的LDL(13—78μg/ml)与细胞保温2小时,肝素释放的细胞表面受体LDL量也增加缓慢,而进入细胞的量增加更为迅速。结果显示LDL在细胞表面受体部位不断进入细胞内并迅速被新的LDL分子所取代,但当LDL增至78μg/ml时逐渐变慢,与Goldstein观察相似。肝素释放的~(125)LDL量在加入量约50 μg/ml时呈现平坦,与Goldstein观察相似。这说明用人血清清蛋白代替LDS同样可以观察到LDL受体的饱和特性。在同一实验条件下。肝素释放家兔的~(125)I-LDL比人高l倍,家兔通过受体进入细胞的~(125)I-LDL比人高1.7倍。二者差别非常显著(P<0.001)。显示兔血清LDL的结构可能在某些方面不同于人。  相似文献   

13.
LDL受体对清道夫受体活性的影响   总被引:1,自引:0,他引:1  
应用经PMA诱导衍生的THP-1巨噬细胞为模型,以单克隆抗体C7B封闭oxLDL上的LDL受体结合位点,结果发现,正常细胞在摄取oxLDL时LDL受体与清道夫受体起协同作用;但C7B作用于蓄积了脂质的THP-1巨噬细胞时,对细胞脂质蓄积程度无明显影响,清道夫受体活性不但不降低反而有所升高,说明由于脂质蓄积LDL受体的作用减弱。  相似文献   

14.
应用经PMA诱导衍生的THP-1巨噬细胞为模型,以单克隆抗体C7B封闭oxLDL上的LDL受体结合位点,结果发现,正常细胞在摄取oxLDL时LDL受体与清道夫受体起协同作用;但C7B作用于蓄积了脂质的THP-1巨噬细胞时,对细胞脂质蓄积程度无明显影响,清道夫受体活性不但不降低反而有所升高,说明由于脂质蓄积LDL受体的作用减弱.  相似文献   

15.
Hepatic low-density lipoprotein receptor (LDLR) is the primary conduit for the clearance of plasma LDL-cholesterol and increasing its expression represents a central goal for treating cardiovascular disease. However, LDLR mRNA is unstable and undergoes rapid turnover mainly due to the three AU-rich elements (ARE) in its proximal 3′-untranslated region (3′-UTR). Herein, our data revealed that 5-azacytidine (5-AzaC), an antimetabolite used in the treatment of myelodysplastic syndrome, stabilizes the LDLR mRNA through a previously unrecognized signaling pathway resulting in a strong increase of its protein level in human hepatocytes in culture. 5-AzaC caused a sustained activation of the inositol-requiring enzyme 1α (IRE1α) kinase domain and c-Jun N-terminal kinase (JNK) independently of endoplasmic reticulum stress. This resulted in activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase1/2 (ERK1/2) that, in turn, stabilized LDLR mRNA. Systematic mutation of the AREs (ARE1-3) in the LDLR 3′UTR and expression of each mutant coupled to a luciferase reporter in Huh7 cells demonstrated that ARE1 is required for rapid LDLR mRNA decay and 5-AzaC-induced mRNA stabilization via the IRE1α-EGFR-ERK1/2 signaling cascade. The characterization of this pathway will help to reveal potential targets to enhance plasma LDL clearance and novel cholesterol-lowering therapeutic strategies.  相似文献   

16.
胆固醇是动物细胞细胞膜的重要组成成分,其做为细胞和环境之间的屏障调节细胞膜的流动性。胆固醇是体内所有的类固醇激素和胆酸合成的前体物质,参与体内代谢。同时胆固醇在神经系统的发育中也起着重要的作用。在血浆中胆固醇以低密度脂蛋白和高密度脂蛋白这两种胆固醇运载血脂蛋白的形式运输。动物细胞通过细胞表面的低密度脂蛋白受体(LDL receptor,LDLR)介导的内吞可以从血液中摄取富含胆固醇的低密度脂蛋白,当细胞表面的LDLR的功能缺陷时,可以导致高胆固醇血症,继而引起动脉粥样硬化、冠心病和中风等严重疾病。本文综述了LDL受体的概述及其通过内吞调节血液中低密度脂蛋白胆固醇水平的作用,并对LDL受体的调节进行了阐述。  相似文献   

17.
18.
牛肾上腺皮质LDL受体经Triton X-100增溶,DEAE32离子交换柱和LpB Sepharose亲和柱层析,在SDS-PAGE中有三条区带,分别在原点;Mr 160kD;Mr125kD处。进一步用8%SDS-PAGE纯化三个区带的蛋白质分别免疫新西兰大白兔所得的抗体,应用免疫印迹和ECL非同位素标记法可对牛肾上腺皮质和人皮肤纤维细胞膜上的LDL受体进行测定。  相似文献   

19.
结合应用激光扫描共聚焦显微镜系统(LSCM)和DiI-AcLDL及BODIPY FL-LDL两种荧光配基选择性标记技术,可在单细胞水平上同时测定LDL受体和清道夫受体活性.C57BL/6J小鼠巨噬细胞用终浓度为5mg/L的 DiI-AcLDL及BODIPY FL-LDL,在37℃负载5 h左右的条件下可获得良好的标记效果.两种荧光配基选择性标记具有高度特异性,在激光共聚焦显微镜下可清晰、定量地观察细胞对LDL和AcLDL摄入,是一种灵敏度高且可定量研究LDL受体和清道夫受体功能的非同位素方法.  相似文献   

20.
牛肾上腺皮质LDL受体经Triton X-100增溶,DEAE_(32)离子交换柱和LpB Sepharose亲和柱层析,在SDS-PAGE中有三条区带,分别在原点;Mr 160kD;Mr125kD处。进一步用8%SDS-PAGE纯化三个区带的蛋白质分别免疫新西兰大白兔所得的抗体,应用免疫印迹和ECL非同位素标记法可对牛肾上腺皮质和人皮肤纤维细胞膜上的LDL受体进行测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号