首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
A synthetic analog of Shiga toxin (Stx) receptor (Synsorb Pk) was quantitatively assessed to determine whether it can protect human renal adenocarcinoma cells (ACHN cells) from the cytotoxicity of Stx1 and Stx2 by coincubation experiments. Coincubation of 100 and 20 ng of Stxl and Stx2 with 50 mg of Synsorb Pk for 1 hr at 37 C in 1 ml of Eagle's Minimum Essential Medium supplemented with 1% (v/v) non-essential amino acid and 10% (v/v) fetal calf serum protected 50% of the cells from the cytotoxic effect. Chromosorb P, an inert matrix control, did not absorb the Stxs at all. Heat-treatment (boiled for 10 min) to Synsorb Pk caused a 50% decrease in Stx2-binding activity, but did not effect the Stx1 binding. Further, Stxs bound to Synsorb Pk could be demonstrated. When 20 mg of Synsorb Pk was coincubated for 30 min at 37 C in 1 ml of phosphate-buffered saline with 1 and 10 ng or more of Stx1 or Stx2, respectively, the toxins could be detected on the surface when the bound toxins on Synsorb Pk were used as the solid phase in enzyme immunoassay. The amount of 100 ng/ml of both Stxl and Stx2 appeared to saturate 20 mg/ml of Synsorb Pk after coincubating for 30 min at 37 C. While assessing the Stxs' binding activity to Synsorb Pk, it was demonstrated that Stxl had a higher affinity to Pk trisaccharide than Stx2. These observations provide useful information on the effectiveness of Synsorb Pk to trap and eliminate free Stxs produced in the gut of patients infected by Stx-producing Escherichia coli, and to prevent the progression of hemorrhagic colitis to hemolytic uremic syndrome.  相似文献   

2.

Background

Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable.

Methodology

We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells.

Results

By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells.

Conclusions

Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED50) of protein synthesis was about 10−11 M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.  相似文献   

3.
The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx), an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h) significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor binding preferences are speculated to play a role. Previous studies used enzyme linked immunosorbent assay (ELISA) to study binding of Stx1 and Stx2a toxoids to glycolipid receptors. Here, we studied binding of holotoxin and B-subunits of Stx1, Stx2a, Stx2b, Stx2c and Stx2d to glycolipid receptors globotriaosylceramide (Gb3) and globotetraosylceramide (Gb4) in the presence of cell membrane components such as phosphatidylcholine (PC), cholesterol (Ch) and other neutral glycolipids. In the absence of PC and Ch, holotoxins of Stx2 variants bound to mixtures of Gb3 with other glycolipids but not to Gb3 or Gb4 alone. Binding of all Stx holotoxins significantly increased in the presence of PC and Ch. Previously, Stx2a has been shown to form a less stable B-pentamer compared to Stx1. However, its effect on glycolipid receptor binding is unknown. In this study, we showed that even in the absence of the A-subunit, the B-subunits of both Stx1 and Stx2a were able to bind to the glycolipids and the more stable B-pentamer formed by Stx1 bound better than the less stable pentamer of Stx2a. B-subunit mutant of Stx1 L41Q, which shows similar stability as Stx2a B-subunits, lacked glycolipid binding, suggesting that pentamerization is more critical for binding of Stx1 than Stx2a.  相似文献   

4.
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli, binds to target cells through a multivalent interaction between its B-subunit pentamer and the cell surface receptor globotriaosylceramide, resulting in a remarkable increase in its binding affinity. This phenomenon is referred to as the “clustering effect.” Previously, we developed a multivalent peptide library that can exert the clustering effect and identified Stx neutralizers with tetravalent peptides by screening this library for high-affinity binding to the specific receptor-binding site of the B subunit. However, this technique yielded only a limited number of binding motifs, with some redundancy in amino acid selectivity. In this study, we established a novel technique to synthesize up to 384 divalent peptides whose structures were customized to exert the clustering effect on the B subunit on a single cellulose membrane. By targeting Stx1a, a major Stx subtype, the customized divalent peptides were screened to identify high-affinity binding motifs. The sequences of the peptides were designed based on information obtained from the multivalent peptide library technique. A total of 64 candidate motifs were successfully identified, and 11 of these were selected to synthesize tetravalent forms of the peptides. All of the synthesized tetravalent peptides bound to the B subunit with high affinities and effectively inhibited the cytotoxicity of Stx1a in Vero cells. Thus, the combination of the two techniques results in greatly improved efficiency in identifying biologically active neutralizers of Stx.  相似文献   

5.
Shiga-toxin-converting bacteriophages (Stx phages) are temperate phages of Escherichia coli, and can cause severe human disease. The spread of shiga toxins by Stx phages is directly linked to lysogen stability because toxins are only synthesized and released once the lytic cycle is initiated. Lysogens of Stx phages are known to be less stable than those of the related lambda phage; this is often described in terms of a 'hair-trigger' molecular switch from lysogeny to lysis. We have developed a mathematical model to examine whether known differences in operator regions and binding affinities between Stx phages and lambda phage can account for the lower stability of Stx lysogens. The Stx phage 933W has only two binding sites in its left operator region (compared to three in phage lambda), but this has a minimal effect on 933W lysogen stability. However, the relatively weak binding affinity between repressor molecules and the second binding site in the right operator is found to significantly reduce the stability of its lysogens, and may account for the hair-trigger nature of the switch. Reduced lysogen stability can lead to increased frequency of genetic recombination in bacterial genomes. The development of the mathematical model has considerable utility in understanding the behaviour and evolution of the molecular switch, with implications for phage-related diseases.  相似文献   

6.
Gallagher SC  Gao ZH  Li S  Dyer RB  Trewhella J  Klee CB 《Biochemistry》2001,40(40):12094-12102
We have used site-directed mutagenesis, flow dialysis, and Fourier transform infrared (FTIR) spectroscopy to study Ca(2+)-binding to the regulatory component of calcineurin. Single Glu-Gln(E --> Q) mutations were used to inactivate each of the four Ca(2+)-binding sites of CnB in turn, generating mutants Q1, Q2, Q3, and Q4, with the number indicating which Ca(2+) site is inactivated. The binding data derived from flow dialysis reveal two pairs of sites in the wild-type protein, one pair with very high affinity and the other with lower affinity Ca(2+)-binding sites. Also, only three sites are titratable in the wild-type protein because one site cannot be decalcified. Mutation of site 2 leaves the protein with only two titratable sites, while mutation of sites 1, 3, or 4 leave three titratable sites that are mostly filled with 3 Ca(2+) equiv added. The binding data further show that each of the single-site mutations Q2, Q3, and Q4 affects the affinities of at least one of the remaining sites. Mutation in either of sites 3 or 4 results in a protein with no high-affinity sites, indicating communication between the two high-affinity sites, most likely sites 3 and 4. Mutation in site 2 decreases the affinity of all three remaining sites, though still leaving two relatively high-affinity sites. The FTIR data support the conclusions from the binding data with respect to the number of titratable sites as well as the impact of each mutation on the affinities of the remaining sites. We conclude therefore that there is communication between all four Ca(2+)-binding sites. In addition, the Ca(2+) induced changes in the FTIR spectra for the wild-type and Q4 mutant are most similar, suggesting that the same three Ca(2+)-binding sites are being titrated, i.e., site 4 is the very high-affinity site under the conditions of the FTIR experiments.  相似文献   

7.
Kinetics of the nucleotide binding to the strong (S) and weak (W) nucleotide-binding site of the Escherichia coli PriA helicase have been studied using the fluorescence stopped-flow technique. Experiments were performed with TNP-ADP and TNP-ATP analogues. Binding of the ADP analogue to the strong binding site is a four-step sequential reaction: (PriA)S + D (k1)<-->(k(-1)) + (S)1 (k2)<-->(k(-2)) (S)2 (k3)<-->(k(-3)) (S)3 (k4)<-->(k(-4)) (S)4. Association of TNP-ATP proceeds through an analogous three-step mechanism. The first two steps and intermediates are similar for both cofactors. However, the (S)3 intermediate is dramatically different for ADP and ATP analogues. Its emission is close to the emission of the free TNP-ADP, while it is by a factor of approximately 16 larger than the free TNP-ATP fluorescence. Thus, only the ADP analogue passes through an intermediate where it leaves the hydrophobic cleft of the site. This behavior corroborates with the fact that ADP leaves the ATPase site without undergoing a chemical change. The fast bimolecular step and the sequential mechanism indicate that the site is easily accessible to the cofactor, and it does not undergo an adjustment prior to binding. The subsequent step is also fast and stabilizes the complex. Magnesium profoundly affects the population of intermediates. The data indicate that the dominant (S)2 species is a part of the ATP catalytic cycle. ADP analogue binding to the weak nucleotide-binding site proceeds in a simpler two-step mechanism: (PriA)W + D (k1)<-->(k(-1)) (W)1 (k2)<-->(k(-2)) (W)2 with (W)1 being a dominant intermediate both in the presence and in the absence of Mg2+. The results indicate that the weak site is an allosteric control site in the functioning of the PriA helicase.  相似文献   

8.
Shiga toxins (Stxs, also referred to as verotoxins) were first described as a novel cytotoxic activity against Vero cells. In this study, we report the characterization of an Stx1-resistant (R-) stock of Vero cells. (1) When the susceptibility of R-Vero cells to Stx1 cytotoxicity was compared to that of Stx1-sensitive (S-) Vero cells by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, cell viability after 48-hr exposure to 10 pg/ml of Stx1 was greater than 80% and less than 15%, respectively. (2) Although both a binding assay of fluorescence-labeled Stx1 and lipid analysis indicated considerable expression of Gb3Cer, a functional receptor for Stxs, in both Vero cells, anti-Gb3Cer monoclonal antibodies capable of binding to S-Vero cells failed to effectively label R-Vero cells, suggesting a conformational difference in the Gb3Cer expressed on R-Vero cells. (3) The lipid analysis also showed that the R-Vero cells contained significant amounts of Gb4Cer. In addition, introduction of exogenous Gb4Cer into S-Vero cells slightly inhibited Stx1 cytotoxicity, suggesting some correlation between glycosphingolipid composition and Stx1 resistance. (4) Both butyrate treatment and serum depression eliminated the Stx1 resistance of R-Vero cells. (5) The results of the analysis by confocal microscopy suggest a difference in intracellular transport of Stx1 between R-Vero and S-Vero cells. Further study of R-Vero cells may provide a model of Stx1 resistance via distinct intracellular transport of Stx1.  相似文献   

9.
The planar cell polarity (PCP) protein, Prickle (Pk), is conserved in invertebrates and vertebrates, and regulates cellular morphogenesis and movement. Vertebrate Pk consists of at least two family members, Pk1 and Pk2, both of which are expressed in the brain; however, their localization and function at synapses remain elusive. Here, we show that Pk2 is expressed mainly in the adult brain and is tightly associated with the postsynaptic density (PSD) fraction obtained by subcellular fractionation. In primary cultured rat hippocampal neurons, Pk2 is colocalized with PSD-95 and synaptophysin at synapses. Moreover, immunoelectron microcopy shows that Pk2 is localized at the PSD of asymmetric synapses in the hippocampal CA1 region. Biochemical assays identified that Pk2 forms a complex with PSD proteins including PSD-95 and NMDA receptor subunits via the direct binding to the C-terminal guanylate kinase domain of PSD-95. These results indicate that Pk2 is a novel PSD protein that interacts with PSD-95 and NMDA receptors through complex formations in the brain.  相似文献   

10.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

11.
The heptahelical receptors for corticotropin-releasing factor (CRF), CRFR1 and CRFR2, display different specificities for CRF family ligands: CRF and urocortin I bind to CRFR1 with high affinity, whereas urocortin II and III bind to this receptor with very low affinities. In contrast, all the urocortins bind with high affinities, and CRF binds with lower affinity to CRFR2. The first extracellular domain (ECD1) of CRFR1 is important for ligand recognition. Here, we characterize a bacterially expressed soluble protein, ECD1-CRFR2beta, corresponding to the ECD1 of mouse CRFR2beta. The K(i) values for binding to ECD1-CRFR2beta are: astressin = 10.7 (5.4-21.1) nm, urocortin I = 6.4 (4.7-8.7) nm, urocortin II = 6.9 (5.8-8.3) nm, CRF = 97 (22-430) nm, urocortin III = sauvagine >200 nm. These affinities are similar to those for binding to a chimeric receptor in which the ECD1 of CRFR2beta replaces the ECD of the type 1B activin receptor (ALK4). The ECD1-CRFR2beta possesses a disulfide arrangement identical to that of the ECD1 of CRFR1, namely Cys(45)-Cys(70), Cys(60)-Cys(103), and Cys(84)-Cys(118). As determined by circular dichroism, ECD1-CRFR2beta undergoes conformational changes upon binding astressin. These data reinforce the importance of the ECD1 of CRF receptors for ligand recognition and raise the interesting possibility that different ligands having similar affinity for the full-length receptor may, nevertheless, have different affinities for microdomains of the receptor.  相似文献   

12.
1. Equilibrium dialysis studies have been made of the binding of a number of small molecules by rat ligandin. Direct measurements of binding together with competition experiments indicated that bromosulphophthalein, oestrone sulphate and dehydroepiandrosterone sulphate each bind at the same single primary binding site with association constants of 1.1 X 10(7), 6.6 X 10(5) and 2.6 X 10(5) 1/mol respectively at pH 7.0,IO.16M,4 degrees C. As well as bromosulphophthalein and dehydroepiandrosterone sulphate, a number of strucurally similar organic anions including 2-hydroxyoestradiol-glutathione oestrone glycyronide, N-methyl-4-aminoazobenzene-glutathione and several bile acids, were able to displace oestrone sulphate from ligandin in a manner consistent with competition at a single binding site. From these experiments association constants for the competing ligands were derived; these were inthe range 1 X 10(4)-1 X 10(6) 1/mol. 2. Ligandin was found to bind a number of compounds for which, because of their low aqueous solubilities relative to their binding affinities complete binding isotherms could bot be obtained. These included several steroids (but not cortisol), 20-methylcholanthrene, diethylstilboestrol, oleate and palmitate. Oestrone sulphate was able to compete with these ligands for binding and the results of the competition experiments were interpretable in terms of 1:1 competition at a single binding site. 3. In general the conjugation of non-polar ligands with sulphate or glutathione resulted in increased affinities, but such increases were relatively small (approximately 15% in therms of free energy) implying that the main driving force for the binding of both the conjugated and unconjugated species was the hydrophobic effect. This conclusion is borne out by the observations that both oestrone and its sulphate showed slight increases in affinity with increase in ionic strength, as would be expected for hydrophobic interactions. 4. As well as non-polar compounds and organic anions, ligandin was also found to bind sulphate and glucuronate to a measurable degree, and to interact quite strongly with glutathione. For the latter compound a single binding site was found with an association constant of 1 X 10(5) 1/mol. Glutathione was able to cause the dissociation of the ligandin-oestrone sulphate complex, but this effect was not explicable in terms of simple 1:1 competition. 5. Both oestrone and oestrone sulphare were bound most strongly at pH 6-7, the affinity of the protein for these ligands falling off quite sharply on either side of this maximum. 6. The affinities of ligandin for bromosulphophthalein, steroids and their conjugates, diethylstilboestrol and N,N-dimethyl-4-aminoazobenzene are similar in magnitude to those of serum albumin and aminoazodye-binding protein A (B. Ketterer, E. Tipping, J.F. Hackney and D. Beale, 1976).  相似文献   

13.
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.  相似文献   

14.
The stereoselective binding and transformation of optically pure bicyclic alcohols by human UDP-glucuronosyltransferases from subfamily 2B were investigated. The enantiomers of 1-indanol, 1-tetralol, and 1-benzosuberol were synthesized by asymmetric Corey-Bakshi-Shibata reduction and subjected to glucuronidation assays. The alcohols studied were primarily glucuronidated by UGT2B7 and UGT2B17. The catalytic transformation by UGT2B17 was highly stereoselective, favoring conjugation of the (R)-enantiomers. UGT2B7, on the other hand, did not exhibit stereoselectivity toward 1-benzosuberol, the best substrate in this series. To assess binding affinities to the enzymes, the six different compounds were tested for their efficiency as inhibitors of either UGT2B7 or UGT2B17. The results of the latter analyses indicated that the affinities of both enantiomers of each pair towards UGT2B7 and UGT2B17 were of the same order of magnitude. Therefore, the findings of this study suggest that the spatial arrangement of the hydroxy group plays an important role in the glucuronic acid transfer reaction, but not necessarily in substrate binding to the UGTs.  相似文献   

15.
A Abbott  W J Ball 《Biochemistry》1992,31(45):11236-11243
Monoclonal antibody M7-PB-E9 binds the sheep kidney Na+,K(+)-ATPase alpha-subunit with high affinity (Kd = 3 nM) and inhibits enzyme turnover in competition with ATP, and, like ATP, in the presence of Mg2+, it stimulates the rate of ouabain binding [Ball, W. J. (1984) Biochemistry 23, 2275-2281]. In this study, covalent attachment of fluorescein 5'-isothiocyanate (FITC) at (or near) the enzyme's ATP binding site did not alter the antibody's affinity for alpha nor did bound antibody alter the anisotropy of (r = 0.36) or the solvent accessibility of iodide to bound FITC. Further, in its E1Na+ conformation (4 mM NaCl), the enzyme's affinity for the ATP congener eosin was unaltered by the bound antibody (Kd = 9 nM). In contrast, partial E2 conformations induced by KCl lowered eosin affinities (0.2 mM KCl, Kd = 28 nM; 0.4 mM, Kd = 86 nM), and M7-PB-E9 reduced these affinities further (Kd = 66 and 130 nM, respectively). By monitoring the fluorescence changes of the FITC-labeled enzyme, the antibody was found to assist several ligand-induced conformational transitions from E1 (E1Na+ or E1Tris) to E2 (E2K+, E2-P(i)Mg2+, or E2Mg2+.ouabain) states, and inhibit the E2K(+)-->E1Na+ transition. Antibody binding alone, however, did not appear to significantly alter enzyme conformation. The antibody therefore is not directed against the ATP site but binds to a region of alpha distinct from any ligand binding site and which plays an important role in the E1<-->E2 transitions.  相似文献   

16.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   

17.
The enantiomers of two analogs of Sazetidine-A as well as several other novel biosteric analogues were synthesized. Their binding affinities at three major nAChRs subtypes and selectivity profiles were determined. Though many (S)-enantiomers of Sazetidine-A analogs have high binding affinities and good subtype selectivities, it is not a general rule that (S)-enantiomers are better than their (R) counterparts. Compound 11, of which the ethynyl group was replaced by its’ bioisostere—the triazole via click chemistry, showed a high binding affinity to α4β2 subtype (Ki = 1.3 nM) and better selectivity to the α4β2 subtype over α3β4 subtype with that of Sazetidine-A. The azide compound 15, a potential photoaffinity label, showed improved high selectivity and similar binding property profile with that of Sazetidine-A. The biaryl analog 17 exhibited a much lower affinity as compared to Sazetidine-A indicating the importance of a ‘long tail’ side chain for α4β2 nAChR binding.  相似文献   

18.
On human erythrocytes, the membrane components associated with Pk and P1 blood-group specificity are glycosphingolipids that carry a common terminal alpha-D-Galp-(1----4)-beta-D-Gal unit, the biosynthesis of which is poorly understood. Human kidneys typed for P1 and P2 (non-P1) blood-group specificity have been assayed for (1----4)-alpha-D-galactosyltransferase activity by use of lactosylceramide [beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and paragloboside [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta-D-Galp- (1----4)-beta-D-Glcp-ceramide] as acceptor substrates. The linkage and anomeric configuration of the galactosyl group transferred into the reaction products were established by methylation analysis before and after alpha- and beta-D-galactosidase treatments, as well as by immunostaining using specific monoclonal antibodies directed against the Pk and P1 antigens. The results demonstrated that the microsomal proteins from P1 kidneys catalyze the synthesis of Pk [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and P1 [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta -D-Galp-(1----4)-beta-D-Glcp-ceramide] glycolipids, whereas microsomes from P2 kidney catalyze the synthesis of the Pk glycolipid, but not of the P1 glycolipid. Competition studies using a mixture of two oligosaccharides (methyl beta-lactoside and methyl beta-lacto-N- neotetraoside) or of two glycolipids (lactosylceramide and paragloboside) as acceptors indicated that these substrates do not compete for the same enzyme in the microsomal preparation from P1 kidneys. The results suggested that the Pk and P1 glycolipids are synthesized by two distinct enzymes.  相似文献   

19.
A series of 6H,13H-pyrazino[1,2-a;4,5-a']diindole analogs was synthesized in order to probe the pharmacophore hypothesis for allosteric ligands of muscarinic M(2) receptors. The 3D structure of the novel ring system was determined by means of NMR spectroscopy and X-ray diffraction revealing a totally flat geometry. Low binding affinities for the [(3)H]N-methylscopolamine-occupied M(2) receptors (reflected by EC(50,diss)) indicated that the spatial arrangement of the pharmacophore elements (two aromatic rings flanked by two cationic centers) incorporated in the bisquaternary analogs 5 and 6 is unfavorable for strong ligand-receptor interactions. Due to the structural similarity of the novel compounds to neuromuscular-blocking agents, their affinities (reflected by K(i)) to the muscle type of nicotinic acetylcholine receptors were also determined. The dimethyl and diallyl analogs 5 and 6 exhibited rather high affinities to the muscle type of nicotinic acetylcholine receptors, suggesting a pronounced neuromuscular-blocking activity. Compound 5 showed a 34-fold higher affinity for the muscle type nAChR than for the allosteric site of M(2) receptors.  相似文献   

20.
Shiga toxin (Stx) binds to the receptor glycolipid Gb3Cer on the cell surface and is responsible for hemolytic uremic syndrome. Stx has two isoforms, Stx1 and Stx2, and in clinical settings Stx2 is known to cause more severe symptoms, although the differences between the mechanisms of action of Stx1 and Stx2 are as yet unknown. In this study, the binding modes of these two isoforms to the receptor were investigated with a surface plasmon resonance analyzer to compare differences by real time receptor binding analysis. A sensor chip having a lipophilically modified dextran matrix or quasicrystalline hydrophobic layer was used to immobilize an amphipathic lipid layer that mimics the plasma membrane surface. Dose responsiveness was observed with both isoforms when either the toxin concentration or the Gb3Cer concentration was increased. In addition, this assay was shown to be specific, because neither Stx1 nor Stx2 bound to GM3, but both bound weakly to Gb4Cer. It was also shown that a number of fitting models can be used to analyze the sensorgrams obtained with different concentrations of the toxins, and the "bivalent analyte" model was found to best fit the interaction between Stxs and Gb3Cer. This shows that the interaction between Stxs and Gb3Cer in the lipid bilayer has a multivalent effect. The presence of cholesterol in the lipid bilayer significantly enhanced the binding of Stxs to Gb3Cer, although kinetics were unaffected. The association and dissociation rate constants of Stx1 were larger than those of Stx2: Stx2 binds to the receptor more slowly than Stx1 but, once bound, is difficult to dissociate. The data described herein clearly demonstrate differences between the binding properties of Stx1 and Stx2 and may facilitate understanding of the differences in clinical manifestations caused by these toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号