首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
BACKGROUND: An animal's state of arousal is fundamental to all of its behavior. Arousal is generally ascertained by measures of movement complemented by brain activity recordings, which can provide signatures independently of movement activity. Here we examine the relationships among movement, arousal state, and local field potential (LFP) activity in the Drosophila brain.RESULTS: We have measured the correlation between local field potentials (LFPs) in the brain and overt movements of the fruit fly during different states of arousal, such as spontaneous daytime waking movement, visual arousal, spontaneous night-time movement, and stimulus-induced movement. We found that the correlation strength between brain LFP activity and movement was dependent on behavioral state and, to some extent, on LFP frequency range. Brain activity and movement were uncoupled during the presentation of visual stimuli and also in the course of overnight experiments in the dark. Epochs of low correlation or uncoupling were predictive of increased arousal thresholds even in moving flies and thus define a distinct state of arousal intermediate between sleep and waking in the fruit fly.CONCLUSIONS: These experiments indicate that the relationship between brain LFPs and movement in the fruit fly is dynamic and that the degree of coupling between these two measures of activity defines distinct states of arousal.  相似文献   

2.
Dramatic changes in neocortical electroencephalogram (EEG) rhythms are associated with the sleep–waking cycle in mammals. Although amphibians are thought to lack a neocortical homologue, changes in rest–activity states occur in these species. In the present study, EEG signals were recorded from the surface of the cerebral hemispheres and midbrain on both sides of the brain in an anuran species, Babina daunchina, using electrodes contacting the meninges in order to measure changes in mean EEG power across behavioral states. Functionally relevant frequency bands were identified using factor analysis. The results indicate that: (1) EEG power was concentrated in four frequency bands during the awake or active state and in three frequency bands during rest; (2) EEG bands in frogs differed substantially from humans, especially in the fast frequency band; (3) bursts similar to mammalian sleep spindles, which occur in non-rapid eye movement mammalian sleep, were observed when frogs were at rest suggesting sleep spindle-like EEG activity appeared prior to the evolution of mammals.  相似文献   

3.
In unrestrained adult rats evoked potentials were recorded by implanted electrodes in the somatosensory cortex in response to electrical stimulation of the pulp of an upper incisor. The spontaneous EEG, motor activity of the animal, and its respiratory movements were recorded simultaneously. Significant differences were observed in the configuration of the potentials and mean amplitude of the primary complex (P1+N1) during states of slow sleep, drowsiness, relaxed wakefulness, grooming, and investigative behavior; the amplitude of the primary complex during marked motor activity was reduced by more than an order of magnitude compared with that observed in a state of motor rest.In a state of relaxed wakefulness negative correlation was recorded between the amplitude of evoked potentials and momentary values of the respiration rate, weaker during periods of intensive motor activity. Meanwhile no direct parallel was observed between changes in potentials and respiration rate over the whole range of behavioral states studied: Depression of potentials was maximal during grooming whereas the respiration rate was maximal during investigative behavior.Paul Flechsig Institute for Brain Research, Karl Marx University, Leipzig, East Germany. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 27–35, January–February, 1985.  相似文献   

4.
Perhaps the most observable of the many circadian oscillations that have been described in both vertebrate and invertebrate animals is the daily alterations in periods of rest and activity. Recent studies in the fruit fly Drosophila melanogaster suggest that these periods of inactivity are not simply rest but share many of the fundamental components that define mammalian sleep. Thus, quiescent episodes are characterized by reduced awareness of the environment and are homeostatically regulated. Although this field is in its infancy, recent studies have focused on the interaction between circadian and homeostatic processes. These results indicate that components of the circadian clock may play a substantial role in mechanisms underlying sleep homeostasis at the molecular level. In this article, the author reviews recent advances obtained using Drosophila as a model system to elucidate fundamental components of sleep regulation.  相似文献   

5.
Oscillatory and synchronized activities in the mammalian brain have been correlated with the execution of complex cognitive tasks. Similar oscillations have been observed in local field potentials (LFPs) in flies, in this case correlated with different attentional states. To further test the significance of these oscillations we recorded LFPs from the brain of Drosophila melanogaster as it responded to the presentation of olfactory stimuli. We find that responses in the 70–80 Hz range increase during olfactory stimulation. Recurrent stimulation specifically decreased the power of LFPs in this frequency range. Delivery of electric shocks before olfactory stimulation modulated LFPs in the 70–80 Hz range by evoking a transient increase. These results suggest that these signals are a simple neuronal correlate of higher-order olfactory processing in flies.  相似文献   

6.
To facilitate the genetic study of sleep, we documented that rest behavior in Drosophila melanogaster is a sleep-like state. The animals choose a preferred location, become immobile for periods of up to 157 min at a particular time in the circadian day, and are relatively unresponsive to sensory stimuli. Rest is affected by both homeostatic and circadian influences: when rest is prevented, the flies increasingly tend to rest despite stimulation and then exhibit a rest rebound. Drugs acting on a mammalian adenosine receptor alter rest as they do sleep, suggesting conserved neural mechanisms. Finally, normal homeostatic regulation depends on the timeless but not the period central clock gene. Understanding the molecular features of Drosophila rest should shed new light on the mechanisms and function of sleep.  相似文献   

7.
The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology.  相似文献   

8.
The functions of sleep are still unknown, but are probably related to cellular and molecular aspects of neural function. To better understand the benefits that sleep may bring at the cellular level, recent studies have employed Drosophila melanogaster as a model system and shown that fruit flies share the fundamental features of mammalian sleep. As in mammals, sleep in Drosophila is characterized by increased arousal threshold and by changes in brain electrical activity. Fly sleep is homeostatically regulated independent of the circadian clock, is modulated by stimulants and hypnotics, and is affected by age. Also, fly sleep is associated with changes in brain gene expression similar to those observed in mammals. While Drosophila neurobiology is sufficiently complex to permit meaningful generalizations to mammals and humans, Drosophila genetics is simple enough to allow a rapid mutagenesis screening. An ongoing mutagenesis study has screened approximately 5000 mutant Drosophila lines and found that sleep amount, sleep pattern, and the homeostatic regulation of sleep are highly conserved phenotypes in flies. So far, this study has identified 10 short sleeper lines and 4 lines that show no sleep rebound after sleep deprivation. Ultimately, the characterization of these lines should help identifying crucial cellular pathways involved in the regulatory mechanisms of sleep and its functional consequences.  相似文献   

9.
The work is a logical continuation of previous studies (analysis of the background electrical activity in the band 1-100 Hz in interstimulus intervals in the process of lever pressing alimentary conditioning in dogs) and it is dedicated to correlation-spectral analysis of prestimulus periods and EEG-reactions to conditioned stimuli, previous to conditioned lever pressing. Visually the EEG reactions present discharges of high-frequency (40-100 Hz) synchronized activity preceding for 40-300 ms the beginning of the changes in EMG of the "working" limb. It is shown that EEG reactions are characterized (in comparison with the background activity) by a higher energetic level and a greater expression of the high coherence (I greater than 0.75) and also by greater phase shifts, in counterbalance to the domination of little phase shifts in the background activity. It is assumed that the patterns of EEG reactions may participate in trigger mechanisms either eliciting conditioned motor reactions (to positive conditioned stimuli) or preventing them (to inhibitory conditioned stimuli).  相似文献   

10.
The study of electroencephalographic (EEG) activity during sleep in the spider monkey has provided new insights into primitive arboreal sleep physiology and behavior in anthropoids. Nevertheless, studies conducted to date have maintained the frequency ranges of the EEG bands commonly used with humans. The aim of the present work was to determine the EEG broad bands that characterize sleep and wakefulness in the spider monkey using principal component analysis (PCA). The EEG activity was recorded from the occipital, central, and frontal EEG derivations of six young-adult male spider monkeys housed in a laboratory setting. To determine which frequencies covaried and which were orthogonally independent during sleep and wakefulness, the power EEG spectra and interhemispheric and intrahemispheric EEG correlations from 1 to 30 Hz were subjected to PCA. Findings show that the EEG bands detection differed from those reported previously in both spider monkeys and humans, and that the 1–3 and 2–13 Hz frequency ranges concur with the oscillatory activity elucidated by cellular recordings of subcortical regions. Results show that applying PCA to the EEG spectrum during sleep and wakefulness in the spider monkey led to the identification of frequencies that covaried with, and were orthogonally independent of, other frequencies in each behavioral vigilance state. The new EEG bands differ from those used previously with both spider monkeys and humans. The 1–3 and 2–13 Hz frequency ranges are in accordance with the oscillatory activity elucidated by cellular recordings of subcortical regions in other mammals.  相似文献   

11.
Currently, there is debate as to whether ponto-geniculo-occipital (PGO) waves or the resulting cortical arousal associated with such neural activity constitute the biological substrate of dreaming. The present study aimed to induce PGO activity in humans using an external stimulation technique. Participants (N = 15) were presented with tones (1,000 Hz) of increasing intensity during Stage II and rapid eye movement (REM) sleep. A peizosensor fixed to the eyelid captured ocular activity (OA) as an indicator of PGO activity in response to the tone. Compared to the stimulation, the Stage II control condition with no Stage II tone-induced ocular activity (OA) condition showed: a) more imagery reports that were rated as more vivid, and b) more electroencephalogram (EEG) arousal time. EEG arousal was correlated with the average Stage II imagery across participants. None of these findings were observed from REM sleep. It was concluded that investigation of PGO analogues, or even PGO activity itself, and dreaming might be inherently flawed due to the confounding presence of EEG arousal, as the two may be intimately linked. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Corticotropin-releasing factor (CRF) is a neurotransmitter in Barrington's nucleus neurons. These neurons can coregulate parasympathetic tone to the bladder (to modulate micturition) and brain noradrenergic activity (to affect arousal). To identify the role of CRF in the regulation of micturition, the effects of CRF agonists and antagonists on urodynamics in the unanesthetized rat were characterized. Rats were implanted with bladder and intrathecal or intraperitoneal catheters under isoflurane anesthesia. Cystometry was performed in the unanesthetized, unrestrained state at least 24 h later. In some cases, cortical electroencephalographic activity (EEG) was recorded simultaneously to assess arousal state. During cystometry, the state of arousal often shifted between waking and sleeping and urodynamic function changed depending on the state. Micturition threshold, bladder capacity, and micturition volume were all increased during sleep. The CRF1/CRF2 receptor agonists CRF and urocortin 2 increased bladder capacity and micturition volume in awake but not in sleeping rats. Conversely, the CRF1 receptor antagonists antalarmin and NBI-30775 increased urinary frequency and decreased bladder capacity in awake rats. The present results demonstrate a profound effect of the state of arousal on urodynamic function and suggest that simultaneous monitoring of EEG and cystometry may provide a useful model for studying nocturnal enuresis and other urinary disorders. In addition, the results provide evidence for an inhibitory influence of CRF in the spinal pathway on micturition. Targeting the CRF system in the spinal cord may provide a novel approach for treating urinary disorders.  相似文献   

13.
The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.  相似文献   

14.
The dominant frequencies in the human electroencephlogram (EEG) are 8–13 Hz (Alpha), 4–7 Hz (Theta), less than 4 Hz (Delta), and greater than 13 Hz (Beta). The conventional explanation of the mechanism for these dominant rhythms involves the effect of electrical activity i n the thalamus on the cortical synaptic potentials that are recorded in an EEG (1,2). Although electrical activity in the thalamus is of prime importance in determining what is recorded Ly the EEG, it is not known why the dominant rhythms recorded are of those specific frequencies. These dominant frequencies may be related through evolution to some aspect of the environment. This paper is devoted to a consideration of the possible relation between the brain's electrical activity and external electromagnetic fields.  相似文献   

15.
Manifestation of typological characteristics of higher nervous activity in EEG energo-(amplitude-) frequency parameters were studied in chronic experiments on cats in a state of rest. EEG Of the animals of a strong nervous system type were characterized by a comparatively steady prevalence of alpha-activity and a stable relationship between the summary energy parameters of the basic frequencies. The brain electrical activity of cats with a weak type of higher nervous activity was in some cases characterized by instability of the general pattern: the summary parameter of each rhythm often changed, while at different intervals of time any of them could be recorded as predominant; in other cases slow waves were steadily prominent, and the summary energy of alpha-activity was low.  相似文献   

16.
Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia. At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) recordings from human subjects. However, a detailed statistical analysis of these dynamics has not been reported. We characterize ketamine’s neural dynamics using a hidden Markov model (HMM). The HMM observations are sequences of spectral power in seven canonical frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled between 0 and 1. We model the observations as realizations of multivariate beta probability distributions that depend on a discrete-valued latent state process whose state transitions obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful tool for experimental data analysis. Together, the estimated beta-HMM parameters and optimal state trajectory revealed an alternating pattern of states characterized primarily by gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human subjects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s) for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the alternating gamma slow-delta activities revealed five sub-states that show regular sequential transitions. These quantitative insights can inform the development of rhythm-generating neuronal circuit models that give mechanistic insights into this phenomenon and how ketamine produces altered states of arousal.  相似文献   

17.
BACKGROUND: Arousal levels in the brain set thresholds for behavior, from simple to complex. The mechanistic underpinnings of the various phenomena comprising arousal, however, are still poorly understood. Drosophila behaviors have been studied that span different levels of arousal, from sleep to visual perception to psychostimulant responses. RESULTS: We have investigated neurobiological mechanisms of arousal in the Drosophila brain by a combined behavioral, genetic, pharmacological, and electrophysiological approach. Administration of methamphetamine (METH) suppresses sleep and promotes active wakefulness, whereas an inhibitor of dopamine synthesis promotes sleep. METH affects courtship behavior by increasing sexual arousal while decreasing successful sexual performance. Electrophysiological recordings from the medial protocerebrum of wild-type flies showed that METH ingestion has rapid and detrimental effects on a brain response associated with perception of visual stimuli. Recordings in genetically manipulated animals show that dopaminergic transmission is required for these responses and that visual-processing deficits caused by attenuated dopaminergic transmission can be rescued by METH. CONCLUSIONS: We show that changes in dopamine levels differentially affect arousal for behaviors of varying complexity. Complex behaviors, such as visual perception, degenerate when dopamine levels are either too high or too low, in accordance with the inverted-U hypothesis of dopamine action in the mammalian brain. Simpler behaviors, such as sleep and locomotion, show graded responses that follow changes in dopamine level.  相似文献   

18.
It has been demonstrated in the rodent hippocampus that rhythmic slow activity (theta) predominantly occurs during rapid eye movement (REM) sleep, while sharp waves and associated ripples occur mainly during non-REM sleep. However, evidence is lacking for correlates of sleep stages with electroencephalogram (EEG) in the hippocampus of monkeys. In the present study, we recorded hippocampal EEG from the dentate gyrus in monkeys overnight under conditions of polysomnographical monitoring. As result, the hippocampal EEG changed in a manner similar to that of the surface EEG: during wakefulness, the hippocampal EEG showed fast, desynchronized waves, which were partly replaced with slower waves of intermediate amplitudes during the shallow stages of non-REM sleep. During the deep stages of non-REM sleep, continuous, slower oscillations (0.5–8 Hz) with high amplitudes were predominant. During REM sleep, the hippocampal EEG again showed fast, desynchronized waves similar to those found during wakefulness. These results indicate that in the monkey, hippocampal rhythmic slow activity rarely occurs during REM sleep, which is in clear contrast to that of rodents. In addition, the increase in the slower oscillations of hippocampal EEG during non-REM sleep, which resembled that of the surface EEG, may at least partly reflect cortical inputs to the dentate gyrus during this behavioral state.  相似文献   

19.
Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.  相似文献   

20.
Sleep postures and eye state of free-ranging herring gulls (Larus argentatus) were studied during the breeding season. Three mutually exclusive behaviours were observed, namely sleep, rest-sleep and rest postures. Arousal thresholds, eye blink rates and eye closure time were obtained during these behaviours. Significant relationships existed between eye blinking, eye closure, and a raised threshold of arousal when birds were in the sleep and rest-sleep postures. During a natural disturbance, birds in the sleep posture remained in this posture but did not blink their eyes: this is called pseudo sleep. Male gulls also exhibited a lower threshold of arousal while in the sleep posture compared with females. We conclude that rhythmic eye blinking is a good indication of sleep in herring gulls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号