首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. C. Ormrod  D. Francis 《Protoplasma》1985,124(1-2):96-105
Summary 28-day-old plants ofSilene coeli-rosa were exposed, at 1,700 hours, to 5 minutes far-red light, 5 minutes red, 5 minutes far-red followed by 5 minutes red light, or maintained in darkness (short day controls). All plants were exposed to tritiated (methyl-3H-)thymidine for 2 hours (1645–1845) and subsequently sampled at 2-hour intervals for 24 hours. The length of the cell cycle (pulse-label mitoses (PLM) method) and changes in cell number were measured in the shoot apical meristems. The cell cycle in the short day controls was 16–17 hours compared with a mean cell generation time of 18 hours. Exposing plants to far-red light resulted in a shortening of the cell cycle to 11 hours, red light resulted in a shortened cycle of 12 hours whilst far-red, red gave a value of 9 hours. Mean cell generation times following each light treatment were approximetely 2–5 hours longer than the corresponding cell cycle times, suggesting that the shortened cell cycles reverted to longer cycles over the experimental period. Measurements of the proportions of cells with the 2C and 4C amounts of DNA in the apical meristems of unlabeled plants indicated that G1 shortened but G2 lengthened in response to far-red light. A measurement of the labeling index also indicated that S-phase shortened in response to far-red. These data also suggested that red light caused G1 to shorten and G2 to lengthen although the corresponding PLM curve was consistent with a dramatic shortening of G2. Far-red followed by red resulted in decreases in the durations of both G2 and G1.  相似文献   

2.
Responses of the rice shoot apex to irradiation with red and far-red light   总被引:1,自引:0,他引:1  
Summary Determinations of cell-doubling times using the technique of colchicine-induced metaphase accumulation showed that after 40 h exposure to red or far-red light the rates of cell division in young rice (Oryza sativa L. cv. Ballila) shoot apices were faster than in dark controls. In red light, the increase was already taking place after 16 h of irradiation but in far-red the rates at this time were slower than in the dark controls. Seedlings became more responsive to far-red light as they continued to grow in darkness between 2 1/2 and 4 1/2 days. Mitotic activity at the apex increased in the leaf primordium and decreased in the sub-summit corpus between the 4th and 5th days of growth in darkness at 30° C.  相似文献   

3.
Twenty-eight-day-old plants of Silene coeli-rosa L. were maintainedin short days (SD) for 9 d (0–8) or exposed to 7 longdays (LD), or 7 SD with a 5 min exposure at 1700 h of each dayto far-red (FR), red (R) or 5 min FR/5 min R, or 7 dark-interrupted(di = 1700–1720 h) LD. Treatments were followed by twofurther SD. The mitotic index and G1 and G2 proportions weremeasured in the shoot apices of plants sampled at 2000 h ofeach day of each replicated treatment. Exposure to 7 LD (= 100per cent flowering) resulted in significant increases, relativeto the SD controls, in both the G2 proportion and the mitoticindex on d 0 to 3, 7 and 8. Five minute FR (= 0 per cent flowering)resulted in cell cycle responses similar to those in LD onlyfrom d 0 to 2. R and FR/R (both = 0 per cent flowering) didnot result in any increases in the G2 proportion in the apexapart from d 3 of FR/R. However 5 min FR/5 min R, and to a lesserextent 5 min R, did result in significant increases in the mitoticindex on d 0, 1, 7, and 8. diLD (= 8–10 per cent flowering)also prevented any significant increases in the G2 proportionon d 0 to 3, and 5 to 8 but the mitotic index was again higheron these days compared with control data. Thus the transitionto floral growth for 90 per cent of the plants is associatedwith changes in the cell cycle in the shoot apex measured asincreases in the G2 proportion at 2000 h of LD 0 to 3 and 7to 8. Silene coeli-rosa L., cell cycle, flowering, phytochrome, shoot apex  相似文献   

4.
T. A. Lie 《Plant and Soil》1969,30(3):391-404
Summary Nodulation of pea and broad bean plants grown in the light was found to be reduced when the roots were exposed to far-red light for 5–15 minutes daily during 5 consecutive days following inoculation with nodule bacteria. Similar results were obtained following a single exposure to far-red light during a period of 15 minutes at the 3rd or 4th day after inoculation. When the roots were exposed to far-red light either before inoculation or during the first two days afterwards there were either no effects or only slight effects on nodulation The inhibitory effect of far-red light on nodulation was partly reduced by subsequent exposure to red light, provided that the same part of the plant was exposed to both red and far-red light,viz either the root or the shoot. When different parts of the plant were exposed to red and far-red light respectively, there was no interaction between the two kinds of light on nodulation. Plants whose roots were exposed to far-red light did not subsequently show stem elongation.Nodules were found to develop on the roots of pea plants grown in the dark, provided that the plants were kept at or below 22°C. At 25°C nodulation was almost absent. Nodulation was decreased by addition of kinetin and IAA. In contrast to plants grown in the light pea plants grown in the dark, inoculated with either an effective or ineffective strain of Rhizobium, developed equal numbers of nodules. Exposure to red light slightly increased the percentage of nodulated plants but decreased the number of nodules per plant. Exposure to far-red light slightly decreased both the percentage of nodulated plants and the number of nodules per plant. The effect of far-red light was counteracted by red light andvice versa.  相似文献   

5.
The influence of light quality on organogenesis in vitro was investigated using Begonia  ×  erythrophylla petiole explants. Pre-treatment of in vitro donor plants by growth in the dark or under far-red or blue light reduced their competence for shoot formation when compared with those grown under red or white light. Culture of competent petiole explants under far-red, blue light or in the dark reduced the number of shoots produced per explant compared to those cultured under red or white light. Explants were found to be developmentally sensitive to both far-red and blue light, because meristem, but not primordia development was inhibited. In addition, blue light inhibition of shoot formation is not mediated directly through phytochrome, as few shoots formed on explants cultured under a mixture of red and blue light which resulted in a high P fr/ P tot (0.82) and would allow shoot formation in the absence of blue light. Unlike the inhibitory influence of far-red light, which is reversible, exposure to blue light permanently reduces an explant's competence for shoot formation. Our results suggest that phytochrome and an independent blue light photoreceptor, possibly a cryptochrome, can regulate shoot production from B. erythrophylla petiole explants.  相似文献   

6.
Dormancy-breaking treatment of the photosensitive Scots pine (Pinus sylvestris L.) seed by white light incubation or a 15-min exposure to red light decreased the abscisic acid content prior to radicle protrusion. Incubation in the dark or exposure to red light followed by a 5-min far-red light irradiation did not cause as great a decrease in abscisic acid content nor was the dormancy relieved. The ability of the far-red light to keep the ABA level high and to prevent germination gradually disappeared as the length of the dark period between the red and far-red treatments was increased to 24 h. ABA was quantified on a gas chromatograph with an electron capture detector.  相似文献   

7.
Dr. W. K. Purves 《Planta》1961,56(6):684-690
Summary This study concerns the effects of red and far-red light on flowering in the short day plantLemna perpusilla 6746. The critical day length for maximum flowering was found to be 10 hours. Exposure to red light near the middle of the dark period inhibited flowering, and the time of maximum sensitivity to red light occurred 9 hours after the beginning of dark periods of either 14 or 17 hours. The inhibition by red light was not reversible by far-red light, which also inhibited flowering, especially when given early in the dark period. Flowering inhibited by exposure to far-red light at the beginning of the dark period could be restored by subsequent exposure to red light. It appears that two photoperiodic partial processes in some plants may be controlled by the red, far-red reversible pigment system.With 5 Figures in the Text  相似文献   

8.
A study was made of the effects of various durations, intensities and combinations of red and far-red light interruptions on the flowering responses of Xanthium pensylvanicum Wallr. A dual response to treatments of far-red light was observed. In short dark periods, far-red light alone did not greatly affect flowering but was able to overcome the inhibition of flowering caused by red light. In dark periods longer than 15 hours, far-red inhibited flowering and added to rather than overcame the inhibition by red light. The dark period length required for far-red inhibition remained the same whether far-red was given at the start or at the eighth hour of darkness.

In 48-hour dark periods Xanthium showed 3 responses to additions of red and far-red light breaks: A) response to red light; B) response to far-red light; and C) response to red followed by far-red light. Red light given any time in the first 30 hours of darkness overcame the inhibitory effect of far-red light given at either the start or the eighth hour of darkness. Red light given later than the thirtieth hour did not overcome the far-red effect.

Approximately the same energy of red light was required to overcome the inhibitory effect of far-red at the second hour of darkness as was required to produce maximum red light inhibition at the eighth hour. Although far-red light was most inhibitory when given early in a long dark period, approximately the same energy of far-red light was required to saturate the far-red response at the fourth, eighth and sixteenth hours.

The results are discussed in relation to other reports of far-red inhibition of flowering in short-day plants.

  相似文献   

9.
Wolfgang Haupt 《Planta》1985,164(1):63-68
Spores of the ferns, Dryopteris filix-mas, D. paleacea and Polystichum minutum, sown on plain agar in quartz-distilled water, required several hours of red light in order to germinate. When, however, water agar was replaced by agar made up with a mineral nutrition medium, a single pulse of red light (about 1 min) was able fully to induce germination. Under these conditions spores became light-sensitive a few minutes after sowing. Thus, zero germination in dark controls was obtained only when all light was excluded immediately after sowing or when saturating far-red was given thereafter. The effect of the mineral medium was also obtained using low ion concentrations with an osmolality of less than 100 mol l–1. Thus, a specific ion effect appears more probable than an unspecific osmotic effect. Species differences in light sensitivity and in dark-germination levels, as reported in the literature, might partly be the consequence of different culture media and of light acting at a very early stage after sowing, which hitherto was assumed to be still insensitive to light. On water agar as well as on mineral agar, the inducing effect of a single red pulse could be increased by the appropriate pretreatment, i.e. by preirradiation with red light for several hours, followed by a saturating pulse of far-red, the latter abolishing the direct inducing effect of the red preirradiation. The nature of both the ion-phytochrome interaction and the phytochrome-phytochrome interaction has not yet been analysed.Abbreviations FR saturating far-red light - Pfr far-red absorbin form of phytochrome - R broad-band red light, acting continuously during several hours This work was performed at the Department of Plant Physiology, University of Lund, Sweden, during a sabbatical leave  相似文献   

10.
The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases.  相似文献   

11.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

12.
Salisbury FB 《Plant physiology》1981,67(6):1230-1238
Six experiments studied the effects of low levels of red and far-red light upon the initiation of measurement of the dark period in the photoperiodic induction of flowering in Xanthium strumarium L. (cocklebur), a short-day plant, and compared effects with those of comparable light treatments applied for 2 hours during the middle of a 16-hour inductive dark period. Red light, or red plus far-red, at levels that inhibit flowering when applied during the middle of the inductive dark period, either had no effect on the initiation of dark measurement (i.e., were perceived as darkness), or they delayed the initiation of dark measurement by various times up to the full interval of exposure (2 hours). Far-red light alone had virtually no effect either at the beginning or in the middle of the dark period. These results confirm that time measurement in the photoperiodic response of short-day Xanthium plants is not simply the time required for metabolic dark conversion of phytochrome. Results also suggest that the pigment system (phytochrome?) and/or responses to it may be significantly different as they function during twilight (initiation of dark measurement), and as they function during a light break several hours later. Possible mechanisms by which cocklebur plants detect the change from light to darkness are discussed.Comparing experimental results with spectral light measurements during twilight and with measurements of light from the full moon led to two conclusions: First, light levels pass from values perceived by the plant as full light to values perceived as complete darkness in only about 5.5 to 11.5 minutes, although twilight as perceived by the human eye lasts well over 30 minutes. Second, cocklebur plants probably do not respond to light from the full moon, even when most sensitive, 7 to 9 hours after the beginning of darkness.  相似文献   

13.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

14.
Summary The possibility that phytochrome is involved in the promotion of flowering by far-red light was investigated. The addition of far-red (FR) to a day extension with red (R) light promotes inflorescence initiation in Lolium. A 2-hour interruption with darkness also promoted flowering compared with the uninterrupted red light control; apex length was further increased by a 10-minute FR irradiation given before the 2-hour dark interruption and was decreased by 10-minutes of R light given in the middle: both FR promotion and R inhibition were reversed by R and FR respectively. Apex length increased approximately linearly with increasing duration of dark interruption up to at least 2 1/2 hours. When varying ratios of R:FR light were substituted for a 2-hour dark period, apex length was increasingly depressed as the % R was increased above 25%; no difference between 25% R/75% FR and 100% FR could be detected. Apex length was inversely linearly related to the calculated [Pfr]/[P] ratios above about 40% Pfr.FR promoted flowering when given during a 5-hour interruption of a day extension with R light but, between 0.25 and 0.90 J m2 s-1, there was no effect of intensity of FR; at 0.11 J m-2 s-1 apex length was shorter than at 0.25 J m-2 s-1 but longer than in darkness. When the duration of FR (from the beginning of a dark interruption of a day extension with R) was varied, apex length increased with increasing duration of FR up to 1 1/4 to 2 hours but further increasing the duration of FR did not promote flowering more.The results implicate phytochrome in the promotion of flowering by FR light. It has been demonstrated that a low [Pfr]/[P] ratio (less than present in 25% R/75% FR) is needed over a relatively long period of time: this explains why a relatively high proportion of FR light must be added to R for several hours in order to give maximum promotion of flowering. It is concluded that, in Lolium, the increased flowering response to FR light is brought about by a reduction of [Pfr]/[P] ratio at the appropriate time, although the possibility that another effect of far-red is also involved has not been rigorously excluded.  相似文献   

15.
Harris  Philip J. C.  Wilkins  Malcolm B. 《Planta》1978,138(3):271-278
The rhythm of carbon dioxide output in Bryophyllum leaves was entrained on exposure to 0.25 h of white light every 24 h. Entrainment also occurred on similar exposure to monochromatic radiation in spectral bands centred at 660 nm and, to a lesser extent, at 730 nm, but a band centred at 450 nm was without effect. A skeleton irradiation programme comprising two 0.25-h exposures to white light per 24 h also entrained the rhythm when the intervening dark periods were either 7.5 h and 16 h, or 10.5 h and 13 h. The rhythm disappeared when the two exposures were separated by 11.5-h and 12-h dark periods. Regular 0.25-h exposures to red light separated by 11.75-h periods of darkness also resulted in loss of the rhythm. Red/far-red reversibility was observed in irradiation schedules having either one or two exposures to red light daily. In the latter case, far-red reversal of the effects of one of the exposures to red light resulted in entrainment of the rhythm by the other, instead of abolition of the rhythm. The occurrence of distinct red/far-red reversibility suggests strongly that phytochrome is the pigment involved in entrainment of this rhythm by cycles of light and darkness.Abbreviation LD light-dark rhythm  相似文献   

16.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

17.
General characteristics of light sensitivity of Impatients wallerana seeds were investigated. Germination was absolutely dependent on light, irrespective of temperature. High percentages of germination were obtained by exposure to long periods of illumination or, alternatively, to several repeated short irradiations with red light. In this case, responsiveness to light was not altered by increasing either the initial incubation period in darkness or the dark intervals between short exposures. Effects of red light were reversed by far-red light, thus demonstrating the involvement of phytochrome. Evidence was presented for an interactive effect, of unknown physiological nature between red and far-red light on the germination of the seeds.Abbreviations Pr phytochrome, red light absorbing form - Pfr phytochrome far-red absorbing form  相似文献   

18.
19.
The effect of red and far-red treatment on chlorophyll synthesis in dark-grown bean leaves was studied at various ages. Although the effect was pronounced in the old leaves, no effect was observed in the young ones (4 days old). In the 5-day old leaves a measurable effect of red light pretreatment can be observed, whereas the far-red reversal effect was not observed. — The length of the dark period between the red pretreatment and the continuous illumination is also age dependent. Leaves older than 6 days show a maximum at about six hours, while in the young leaves the red light effect increases with the time of dark incubation up to the 24 hours tested. — The reversal effect of far-red light on protochlorophyllide regeneration was also examined. The far-red light has no reversal effect on leaves younger than 6 days old, while on the old leaves it has such an effect.  相似文献   

20.
The long-day plant Lemna gibba L., strain G3 exhibits a relatively low sensitivity to short, white-light interruptions given during the dark period of a short-day cycle. However, the plants are fairly sensitive to low-intensity red light treatments given during a 15-hour dark period on the third day of a 2LD-(9L:15D)-2LD-7SD schedule. Far-red light is almost as effective as red light, and attempts to reverse the red light response with subsequent far-red light treatments have not been successful. Blue light proved to be without effect. When plants were grown on a 48-hour cycle with 15 minutes of red light every 4 hours during the dark period, the critical daylength was reduced from about 32 hours to slightly less than 12 hours.

Continuous red light induced a fairly good flowering response. However, as little as 1 hour of white light each day gave a significant improvement in the flowering response over that of the continuous red light control. White light of 600 to 700 ft-c was more effective than white light of 60 to 70 ft-c. The white light was much more effective when divided into 2 equal exposures given 8 to 12 hours apart. These results suggest an increase in light sensitivity with regard to flower induction about 8 to 10 hours after the start of the light period.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号