首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Colicins are antibiotic proteins that kill sensitive Escherichia coli cells. Their mode of action involves three steps: binding to specific receptors located in the outer membrane, translocation across this membrane, and action on their targets. A specific colicin domain can be assigned to each of these steps. Colicins have been subdivided into two groups (A and B) depending on the proteins required for them to cross the external membrane. Plasmids were constructed which led to an overproduction of the Tol proteins involved in the import of group A colicins. In vitro binding of overexpressed Tol proteins to either Tol-dependent (group A) or TonB-dependent (group B) colicins was analyzed. The Tol dependent colicins A and E1 were able to interact with TolA but the TonB dependent colicin B was not. The C-terminal region of TolA, which is necessary for colicin uptake, was also found to be necessary for colicin A and E1 binding to occur. Furthermore, only the isolated N-terminal domain of colicin A, which is involved in the translocation step, was found to bind to TolA. These results demonstrate the existence of a correlation between the ability of group A colicins to translocate and their in vitro binding to TolA protein, suggesting that these interactions might be part of the colicin import process.  相似文献   

2.
Pore-forming colicins exert their lethal effect on E coli through formation of a voltage-dependent channel in the inner (cytoplasmic-membrane) thus destroying the energy potential of sensitive cells. Their mode of action appears to involve 3 steps: i) binding to a specific receptor located in the outer membrane; ii) translocation across this membrane; iii) insertion into the inner membrane. Colicin A has been used as a prototype of pore-forming colicins. In this review, the 3 functional domains of colicin A respectively involved in receptor binding, translocation and pore formation, are defined. The components of sensitive cells implicated in colicin uptake and their interactions with the various colicin A domains are described. The 3-dimensional structure of the pore-forming domain of colicin A has been determined recently. This structure suggests a model of insertion into the cytoplasmic membrane which is supported by model membrane studies. The role of the membrane potential in channel functioning is also discussed.  相似文献   

3.
The mechanisms by which colicins, protein toxins produced by Escherichia coli, kill other E. coli, have become much better understood in recent years. Most colicins initially bind to an outer membrane protein receptor, and then search for a separate nearby outer membrane protein translocator that serves as a pathway into target cells. Many colicins use the outer membrane porin, OmpF, as that translocator, while using a different primary receptor. Colicin N is unique among known colicins in that only OmpF had been identified as being required for uptake of the colicin and it was presumed to somehow serve as both receptor and translocator. Genetic screens also identified a number of genes required for lipopolysaccharide (LPS) synthesis as uniquely required for killing by colicin N, but not by other colicins. Johnson et al. show that the receptor‐binding domain of colicin N binds to LPS, and does not require OmpF for that binding. LPS of a minimal length is required for binding, explaining the requirement for specific elements of the LPS biosynthetic pathway. For colicin N, the receptor‐binding domain does not recognize a protein, but rather the most abundant component of the outer membrane itself, LPS.  相似文献   

4.
Pore-forming colicins are a family of protein toxins (Mr40–70kDa) produced by Escherichia coli and related bacteria. They are bactericidal by virtue of their ability to form ion channels in the inner membrane of target cells. They provide a useful means of studying questions such as toxin action, polypeptide translocation across and into membranes, voltage-gated channels and receptor function. These colicins bind to a receptor in the outer membrane before being translocated across the cell envelope with the aid of helper proteins that belong to nutrient-uptake systems and the so-called‘Tol’proteins, the function of which has not yet been properly defined. A distinct domain appears to be associated with each of three steps (receptor binding, translocation and formation of voltage-gated channels). The Tol-dependent uptake pathway is described here. The structures and interactions of TolA, B, Q and R have by now been quite clearly defined. Transmembrane α-helix interactions are required for the functional assembly of the E. coli Tol complex, which is preferentially located at contact sites between the inner and outer membranes. The number of colicin translocation sites is about 1000 per cell. The role and the involvement of the OmpF porin (with colicins A and N) have been described in a recent study on the structural and functional interactions of a colicin-resistant mutant of OmpF. The X-ray crystal structure of the channel-forming fragment of colicin A and that of the entire colicin la have provided the basis for biophysical and site-directed muta-genesis studies. Thanks to this powerful combination, it has been established that the interaction with the receptor in the outer membrane leads to a very substantial conformational change, as a result of which the N-terminal domains of colicins interact with the lumen of the OmpF pore and then with the C-terminal domain of TolA. A molten globular conformation of colicins probably constitutes the intermediate translocation/insertion competent state. Once the pore has formed, the polypeptide chain spans the whole cell envelope. Three distinct steps occur in the last stage of the process: (i) fast binding of the C-terminal domain to the outer face of the cytoplasmic membrane; (ii) a slow insertion of the polypeptide chain into the outer face of the inner membrane in the absence of Δψ and (iii) a profound reorganization of the helix association, triggered by the transmembrane potential and resulting in the formation of the colicin channel.  相似文献   

5.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

6.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

7.
Cavard D 《Journal of bacteriology》2002,184(13):3723-3733
Three oligomeric forms of colicin A with apparent molecular masses of about 95 to 98 kDa were detected on sodium dodecyl sulfate (SDS)-polyacrylamide gels loaded with unheated samples from colicin A-producing cells of Escherichia coli. These heat-labile forms, called colicins Au, were visualized both on immunoblots probed with monoclonal antibodies against colicin A and by radiolabeling. Cell fractionation studies show that these forms of colicin A were localized in the outer membrane whether or not the producing cells contained the cal gene, which encodes the colicin A lysis protein responsible for colicin A release in the medium. Pulse-chase experiments indicated that their assembly into the outer membrane, as measured by their heat modifiable migration in SDS gels, was an efficient process. Colicins Au were produced in various null mutant strains, each devoid of one major outer membrane protein, except in a mutant devoid of both OmpC and OmpF porins. In cells devoid of outer membrane phospholipase A (OMPLA), colicin A was not expressed. Colicins Au were detected on immunoblots of induced cells probed with either polyclonal antibodies to OmpF or monoclonal antibodies to OMPLA, indicating that they were associated with both OmpF and OMPLA. Similar heat-labile forms were obtained with various colicin A derivatives, demonstrating that the C-terminal domain of colicin A, but not the hydrophobic hairpin present in this domain, was involved in their formation.  相似文献   

8.
The study of colicin release from producing cells has revealed a novel mechanism of secretion. Instead of a built-in 'tag', such as a signal peptide containing information for secretion, the mechanism employs coordinate expression of a small protein which causes an increase in the envelope permeability, resulting in the release of the colicin as well as other proteins. On the other hand, the mechanism of entry of colicins into sensitive cells involves the same three stages of protein translocation that have been demonstrated for various cellular organelles. They first interact with receptors located at the surface of the outer membrane and are then transferred across the cell envelope in a process that requires energy and depends upon accessory proteins (TolA, TolB, TolC, TolQ, TolR) which might play a role similar to that of the secretory apparatus of eukaryotic and prokaryotic cells. At this point, the type of colicin described in this review interacts specifically with the inner membrane to form an ion channel. The pore-forming colicins are isolated as soluble proteins and yet insert spontaneously into lipid bilayers. The three-dimensional structures of some of these colicins should soon become available and site-directed mutagenesis studies have now provided a large number of modified polypeptides. Their use in model systems, particularly those in which the role of transmembrane potential can be tested for polypeptide insertion and ionic channel gating, constitutes a powerful handle with which to improve our understanding of the dynamics of protein insertion into and across membranes and the molecular basis of membrane excitability. In addition, their immunity proteins, which exist only in one state (membrane-inserted) will also contribute to such an understanding.  相似文献   

9.
Duché D 《Biochimie》2002,84(5-6):455-464
Pore-forming colicins are plasmid-encoded bacteriocins that kill Escherichia coli and closely related bacteria. They bind to receptors in the outer membrane and are translocated across the cell envelope to the inner membrane where they form voltage-dependent ion-channels. Colicins are composed of three domains, with the C-terminal domain responsible for pore-formation. Isolated C-terminal pore-forming domains produced in the cytoplasm of E. coli are inactive due to the polarity of the transmembrane electrochemical potential, which is the opposite of that required. However, the pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of E. coli from the periplasmic side, forming a functional channel. Sp-pfColA is specifically inhibited by the colicin A immunity protein (Cai). This construct has been used to investigate colicin A channel formation in vivo and to characterise the interaction of pfColA with Cai within the inner membrane. These points will be developed further in this review.  相似文献   

10.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

11.
Intracellularly expressed antibodies have been designed to bind and inactivate target molecules inside eukaryotic cells. Here we report that an antibody fragment can be used to probe the periplasmic localization of the colicin A N-terminal domain. Colicins form voltage-gated ion channels in the inner membrane of Escherichia coli. To reach their target, they bind to a receptor located on the outer membrane and then are translocated through the envelope. The N-terminal domain of colicins is involved in the translocation step and therefore is thought to interact with proteins of the translocation system. To compete with this system, a single-chain variable fragment (scFv) directed against the N-terminal domain of the colicin A was synthesized and exported into the periplasmic space of E. coli. The periplasmic scFv inhibited the lethal activity of colicin A and had no effect on the lethal activity of other colicins. Moreover, the scFv was able to specifically inactivate hybrid colicins possessing the colicin A N-terminal domain without affecting their receptor binding. Hence, the periplasmic scFv prevents the translocation of colicin A and probably its interaction with import machinery. This indicates that the N-terminal domain of the toxin is accessible in the periplasm. Moreover, we show that production of antibody fragments to interfere with a biological function can be applied to prokaryotic systems.  相似文献   

12.
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.  相似文献   

13.
Colicin M inhibits murein biosynthesis by interfering with bactoprenyl phosphate carrier regeneration. It belongs to the group B colicins the uptake of which through the outer membrane depends on the Tong, ExbB and ExbD proteins. These colicins contain a sequence, called the Tong box, which has been implicated in transport via Tong. Point mutations were introduced by PCR into the TonB box of the structural gene for colicin M, cma, resulting in derivatives that no longer killed cells. Mutations in the tonB gene suppressed, in an allele-specific manner, some of the cma mutations, suggesting that interaction of colicin M with Tong may be required for colicin M uptake. Among the hydroxylamine-generated colicin M-inactive cma mutants was one which carried cysteine in place of arginine at position 115. This Colicin derivative still bound to the FhuA receptor and killed cells when translocated across the outer membrane by osmotic shock treatment. It apparently represents a new type of transport-deficient colicin M. Additional hydroxylamine-generated inactive derivatives of colicin M carried mutations centered on residues 193–197 and 223–252. Since these did not kill osmotically shocked cells the mutations must be located in a region which is important for colicin M activity. It is concluded that the Tong box at the N-terminal end of colicin M must be involved in colicin uptake via Tong across the outer membrane and that the C-terminal portion of the molecule is likely to contain the activity domain.  相似文献   

14.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

15.
Colicins use two envelope multiprotein systems to reach their cellular target in susceptible cells of Escherichia coli : the Tol system for group A colicins and the TonB system for group B colicins. The N-terminal domain of colicins is involved in the translocation step. To determine whether it interacts in vivo with proteins of the translocation system, constructs were designed to produce and export to the cell periplasm the N-terminal domains of colicin E3 (group A) and colicin B (group B). Producing cells became specifically tolerant to entire extracellular colicins of the same group. The periplasmic N-terminal domains therefore compete with entire colicins for proteins of the translocation system and thus interact in situ with these proteins on the inner side of the outer membrane. In vivo cross-linking and co-immunoprecipitation experiments in cells producing the colicin E3 N-terminal domain demonstrated the existence of a 120 kDa complex containing the colicin domain and TolB. After in vitro cross-linking experiments with these two purified proteins, a 120 kDa complex was also obtained. This suggests that the complex obtained in vivo contains exclusively TolB and the colicin E3 domain. The N-terminal domain of a translocation-defective colicin E3 mutant was found to no longer interact with TolB. Hence, this interaction must play an important role in colicin E3 translocation.  相似文献   

16.
Here we review the mechanisms that bacterial cells use to protect themselves against channel-forming colicins. Four mechanisms are examined: immunity, resistance, tolerance and PacB character. Immunity confers protection to colicinogenic cells against the colicin they produce, since the colicinogenic plasmid bears the genetic determinant for such immunity protein. Resistance is provided by modifications on colicin receptors located on the outer membrane. It prevents colicin adsorption and protects against those colicins sharing a common receptor. Tolerance is achieved by changes in the translocation system. The adsorbed colicin is not translocated toward the periplasmic space. This impedes its insertion into the cell membrane as well as the formation of the transmembrane channel. Tolerance confers protection against colicins that share the same translocation system. Finally, we discuss the PacB character, that confers protection against all known channel-forming colicins. The latter property is encoded by non-colicinogenic plasmids in the H-incompatibility complex.  相似文献   

17.
The Tol-Pal proteins of the cell envelope of Escherichia coli are required for maintaining outer membrane integrity. This system forms protein complexes in which TolA plays a central role by providing a bridge between the inner and outer membranes via its interaction with the Pal lipoprotein. The Tol proteins are parasitized by filamentous bacteriophages and group A colicins. The N-terminal domain of the Ff phage g3p protein and the translocation domains of colicins interact directly with TolA during the processes of import through the cell envelope. Recently, a four-amino-acid sequence in Pal has been shown to be involved in Pal's interaction with TolA. A similar motif is also present in the sequence of two TolA partners, g3p and colicin A. Here, a mutational study was conducted to define the function of these motifs in the binding activity and import process of TolA. The various domains were produced and exported to the bacterial periplasm, and their cellular effects were analyzed. Cells producing the g3p domain were tolerant to colicins and filamentous phages and had destabilized outer membranes, while g3p deleted of three residues in the motif was affected in TolA binding and had no effect on cell integrity or colicin or phage import. A conserved Tyr residue in the colicin A translocation domain was involved in TolA binding and colicin A import. Furthermore, in vivo and in vitro coprecipitation analyses demonstrated that colicin A and g3p N-terminal domains compete for binding to TolA.  相似文献   

18.
Fragmentation of colicins A and E1 by cell surface proteases.   总被引:7,自引:5,他引:2       下载免费PDF全文
Interaction of either colicin A or E1 with the surface of Escherichia coli cells resulted in extensive cleavage of the colicins into many peptide fragments in the molecular weight range of 10,000 to 30,000 released into the supernatants of colicin-cell mixtures. The protease inhibitor P-aminobenzamidine inhibited the cleavage of colicin A and enhanced colicin killing activity, suggesting that proteolysis is not required for the killing action of colicin. Fragments derived from the supernatants of the mixtures were inactive against sensitive cells. Proteolytic activity against both colicins was localized primarily in the outer membrane fraction of the cell envelope. At least two distinct protease activities appear to be present. Examination of the patterns of cleavage and inactivation of the colicins by a series of resistant mutants indicates that specific colicin receptors play no essential role in colicin proteolysis. In addition, evidence is presented that adsorption of colicin to specific receptors is a reversible process.  相似文献   

19.
Fridd SL  Gökçe I  Lakey JH 《Biochimie》2002,84(5-6):477-483
There exists ample evidence for the assumption that pore-forming colicins cannot exert their toxicity within the producing cell and that they must gain access to the outer face of the cytoplasmic membrane to achieve this. We wished to construct pET-vectors to produce pore-forming domains of colicin A and N with N-terminal hexa-histidine tags under the control of a T7 promoter. This was only possible when the correct immunity protein was also present. Hence it appears that this system exhibits the peculiarity that there is a toxicity associated with the over produced pore-forming domain. However, when the ratio of colicin to immunity protein is compared it is still clear that direct insertion into the cytoplasmic membrane does not occur and that membrane translocation of the colicin at limited sites may be occurring. This article reviews previous literature on the subject in terms of a model for limited sites of colicin action.  相似文献   

20.
Colicin biology.     
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号