首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
2.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

3.
4.
R D Gietz  S Prakash 《Gene》1988,74(2):535-541
The RAD4 gene of Saccharomyces cerevisiae is required for the incision step of excision repair. We have cloned the RAD4 gene and determined its nucleotide sequence. RAD4 encodes a somewhat basic protein of 754 amino acids (aa) with an Mr of 87,173. RAD4 contains several groups of 4-7 consecutive basic aa residues that could be involved in DNA binding and it also contains an alpha-helix-turn-alpha-helix motif for DNA binding. Like several other DNA repair proteins of S. cerevisiae, the C terminus of RAD4 protein is highly acidic.  相似文献   

5.
6.
7.
Zhou L  Marzluf GA 《Biochemistry》1999,38(14):4335-4341
Multiple GATA factors, zinc finger DNA binding proteins that recognize consensus GATA elements, exist in Neurospora crassa. One of them, SRE, is involved in controlling the iron metabolic pathway of N. crassa. In N. crassa, iron transport is mediated by a number of small cyclic peptides, known as siderophores. The siderophore synthesis pathway is negatively regulated by SRE; a loss-of-function sre mutant strain showed partial constitutive synthesis of siderophore. In the research presented here, the negative function of SRE was further confirmed by a heterokaryon test and by gene complementation. SRE was expressed as a GST fusion protein. In vitro EMSA revealed that SRE binds specifically to DNA molecules containing GATA sequence elements. Autoregulation of sre gene expression appears possible because the sre gene promoter itself contains GATA sequences. Mutations were introduced into sre that lead to amino acid substitutions in each of the zinc fingers that will disrupt their function. In vitro EMSA revealed that both N-terminal and C-terminal zinc fingers of SRE are involved in DNA binding. This feature is different from that found with the vertebrate two zinc finger GATA factors. Invivo tests, accomplished by transforming the mutant sre genes into sre rip mutant, showed that SRE with mutations in either or both zinc fingers still maintained its function under low-iron conditions. In contrast, these mutant SRE proteins fail to function under high-iron conditions. Our results predict the presence of other positive or negative regulators of the siderophore synthetic pathway.  相似文献   

8.
The human ERCC1/XPF complex is a structure-specific endonuclease with defined polarity that participates in multiple DNA repair pathways. We report the heterodimeric structure of the C-terminal domains of both proteins responsible for ERCC1/XPF complex formation. Both domains exhibit the double helix-hairpin-helix motif (HhH)2, and they are related by a pseudo-2-fold symmetry axis. In the XPF domain, the hairpin of the second motif is replaced by a short turn. The ERCC1 domain folds properly only in the presence of the XPF domain, which implies a role for XPF as a scaffold for the folding of ERCC1. The intersubunit interactions are largely hydrophobic in nature. NMR titration data show that only the ERCC1 domain of the ERCC1/XPF complex is involved in DNA binding. On the basis of these findings, we propose a model for the targeting of XPF nuclease via ERCC1-mediated interactions in the context of nucleotide excision repair.  相似文献   

9.
We have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ hybridization and Southern blot analysis of mouse x human somatic cell hybrids, the gene was localized to human chromosome 10q11-q21. An RFLP detected within the ERCC6 locus can be helpful in linkage analysis.  相似文献   

10.
A functional homolog (rhp23) of human HHR23A and Saccharomyces cerevisiae RAD23 was cloned from the fission yeast Schizosaccharomyces pombe and characterized. Consistent with the role of Rad23 homologs in nucleotide excision repair, rhp23 mutant cells are moderately sensitive to UV light but demonstrate wild-type resistance to γ-rays and hydroxyurea. Expression of the rhp23, RAD23 or HHR23A cDNA restores UV resistance to the mutant, indicating that rhp23 is a functional homolog of the human and S.cerevisiae genes. The rhp23::ura4 mutation also causes a delay in the G2 phase of the cell cycle which is corrected when rhp23, RAD23 or HHR23A cDNA is expressed. Rhp23 is present throughout the cell but is located predominantly in the nucleus, and the nuclear levels of Rhp23 decrease around the time of S phase in the cell cycle. Rhp23 is ubiquitinated at low levels, but overexpression of the rhp23 cDNA induces a large increase in ubiquitination of other proteins. Consistent with a role in protein ubiquitination, Rhp23 binds ubiquitin, as determined by two-hybrid analysis. Thus, the rhp23 gene plays a role not only in nucleotide excision repair but also in cell cycle regulation and the ubiquitination pathways.  相似文献   

11.
A newly characterized rad1 missense mutation (rad1-20) in the yeast Saccharomyces cerevisiae maps to a region of the Rad1 polypeptide known to be required for Rad1-Rad10 complex formation. The UV sensitivity of the rad1-20 mutant can be partially and specifically corrected by overexpression of wild-type Rad10 protein. These results suggest that complex formation between the Rad1 and Rad10 proteins is required for nucleotide excision repair.  相似文献   

12.
In response to diverse genotoxic stimuli (e.g. UV and cisplatin), the mitogen-activated protein kinases ERK1/2, JNK1/2, and p38alpha/beta become rapidly phosphorylated and in turn activate multiple downstream effectors that modulate apoptosis and/or growth arrest. Furthermore, previous lines of evidence have strongly suggested that ERK1/2 and JNK1/2 participate in global-genomic nucleotide excision repair, a critical antineoplastic pathway that removes helix-distorting DNA adducts induced by a variety of mutagenic agents, including UV. To rigorously evaluate the potential role of mitogen-activated protein kinases in global-genomic nucleotide excision repair, various human cell strains (primary skin fibroblasts, primary lung fibroblasts, and HCT116 colon carcinoma cells) were treated with highly specific chemical inhibitors, which, following UV exposure, (i) abrogated the capacities of ERK1/2, JNK1/2, or p38alpha/beta to phosphorylate specific downstream effectors and (ii) characteristically modulated cellular proliferation, clonogenic survival, and/or apoptosis. A highly sensitive flow cytometry-based nucleotide excision repair assay recently optimized and validated in our laboratory was then employed to directly demonstrate that the kinetics of UV DNA photoadduct repair are highly similar in mock-treated versus mitogen-activated protein kinase inhibitor-treated cells. These data on primary and tumor cells treated with pharmacological inhibitors were fully corroborated by repair studies using (i) short hairpin RNA-mediated knockdown of ERK1/2 or JNK1/2 in human U2OS osteosarcoma cells and (ii) expression of a dominant negative p38alpha mutant in human primary lung fibroblasts. Our results provide solid evidence for the first time, in disaccord with a burgeoning perception, that mitogen-activated protein kinase signaling does not influence the efficiency of human global-genomic nucleotide excision repair.  相似文献   

13.
14.
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.  相似文献   

15.
The fatty acid composition of adipose tissue in livestock has been recognized as an important carcass trait that affects meat quality. To determine the overall positive effect on fatty acid synthesis, we investigated PPARγ, SREBPs, FABP4, SCD, and FASN genes because SNP and/or SNP combinations were strongly affecting each fatty acid synthesis pathway. We screened their SNPs, SNP combinations, and genotype. Furthermore, we studied the economic traits C18:1, monounsaturated fatty acid (MUFA), and marbling score (MS). To enhance the accuracy of the predictive genetic effect, we applied a statistical adjustment model excluding environmental factors. We also selected superior genes, gene combinations, and genotypes for each economic trait by using multifactor dimensionality reduction. Based on the results, g.3977-325 T>C (CC) was selected as the best genotype of the SNP and the combination (g.10153 A>G, g.3977-325 T>C) (AACC, AGCC, GGCC), (g.3690 G>A, g.3977-325 T>C) (GGCC, GACC), (g.3977-325 T>C, g.25670 C>T) (CCCC, CCCT, CCTT) (genotypes of the best SNP combination) was selected as the best gene combination for C18:1 and MUFA. In addition, g.3977-325 T>C (CC) was selected as the best genotype of the SNP and the combination (g.3977-325 T>C, g.6974 G>A) (TTAA, CTAA, CCAA, CCGA, CCGG) as the best SNP combination for MS. We integrated genes that were selected as excellent SNP and SNP combinations affecting two main routes of the fatty acid synthesis pathway and identified the best and final SNP, SNP combination, and superior genotype.  相似文献   

16.
Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.  相似文献   

17.
High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently been detected in Australia and in an effort to isolate the genes responsible for resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with an average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides approximately 50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.  相似文献   

18.
19.
Amino acid sequences of human collagen alpha 1(VI) and alpha 2(VI) chains were completed by cDNA sequencing and Edman degradation demonstrating that the mature polypeptides contain 1009 and 998 amino acid residues respectively. In addition, they contain small signal peptide sequences. Both chains show 31% identity in the N-terminal (approximately 235 residues) and C-terminal (approximately 430 residues) globular domains which are connected by a triple helical segment (335-336 residues). Internal alignment of the globular sequences indicates a repetitive 200-residue structure (15-23% identity) occurring three times (N1, C1, C2) in each chain. These repeating subdomains are connected to each other and to the triple helix by short (15-30 residues) cysteine-rich segments. The globular domains possess several N-glycosylation sites but no cell-binding RGD sequences, which are exclusively found in the triple helical segment. Sequencing of alpha 2(VI) cDNA clones revealed two variant chains with a distinct C2 subdomain and 3' non-coding region. The repetitive segments C1, C2 and, to a lesser extent, N1 show significant identity (15-18%) to the collagen-binding A domains of von Willebrand factor (vWF) and they are also similar to some integrin receptors, complement components and a cartilage matrix protein. Since the globular domains of collagen VI come into close contact with triple helical segments during the formation of tissue microfibrils it suggests that the globular domains bind to collagenous structures in a manner similar to the binding of vWF to collagen I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号