首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.  相似文献   

3.
Antennapedia is one of the homeotic selector genes required for specification of segment identity in Drosophila. Dominant mutations that ectopically express Antennapedia cause transformation of antenna to leg. Loss-of-function mutations cause partial transformation of leg to antenna. Here we examine the role of Antennapedia in the establishment of leg identity in light of recent advances in our understanding of antennal development. In Antennapedia mutant clones in the leg disc, Homothorax and Distal-less are coexpressed and act via spineless to transform proximal femur to antenna. Antennapedia is negatively regulated during leg development by Distal-less, spineless, and dachshund and this reduced Antennapedia expression is needed for the proper development of distal leg elements. These findings suggest that the temporal and spatial regulation of the homeotic selector gene Antennapedia in the leg disc is necessary for normal leg development in Drosophila.  相似文献   

4.
5.
6.
7.
The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.  相似文献   

8.
9.
10.
Cellular interaction between the proximal and distal domains of the limb plays key roles in proximal-distal patterning. In Drosophila, these domains are established in the embryonic leg imaginal disc as a proximal domain expressing escargot, surrounding the Distal-less expressing distal domain in a circular pattern. The leg imaginal disc is derived from the limb primordium that also gives rise to the wing imaginal disc. We describe here essential roles of Wingless in patterning the leg imaginal disc. Firstly, Wingless signaling is essential for the recruitment of dorsal-proximal, distal, and ventral-proximal leg cells. Wingless requirement in the proximal leg domain appears to be unique to the embryo, since it was previously shown that Wingless signal transduction is not active in the proximal leg domain in larvae. Secondly, downregulation of Wingless signaling in wing disc is essential for its development, suggesting that Wg activity must be downregulated to separate wing and leg discs. In addition, we provide evidence that Dll restricts expression of a proximal leg-specific gene expression. We propose that those embryo-specific functions of Wingless signaling reflect its multiple roles in restricting competence of ectodermal cells to adopt the fate of thoracic appendages.  相似文献   

11.
We studied the common kinematic features of the coxa and trochanter in cursorial and raptorial legs, which are the short size of the podomers, predominantly monoaxial joints, and the approximate orthogonality of adjacent joint axes. The chain coxa-trochanter with its short elements and serial orthogonality of joint axes resembles the gimbals which combine versatility and tolerance to external perturbations. The geometry of legs was studied in 23 insect species of 12 orders. Insects with monoaxial joints were selected. The joint between the trochanter and the femur (TFJ) is defined either by two vestigial condyles or by a straight anterior hinge. Direction of the joint axes in the two basal podomers was assessed by 3D measurements or by goniometry in two planes. Length of the coxa is <15% (mostly <8%) of the total length of the cursorial leg, that of the trochanter <10%. Angles between the proximal and distal joint axes in the middle coxa range from 124 to 84 degrees (mean 97+/-14 degrees ), in the trochanter (in all legs studied) from 125 to 72 degrees (mean 90+/-13 degrees ). Vectors of the distal axis in the coxa are concentrated about the normal to the plane defined by the proximal axis and the midpoint between the distal condyles. These vectors in the trochanter lie at various angles to the normal; angles are correlated with the direction of the TFJ relative to the femur. Range of reduction about the TFJ is over 60 degrees in the foreleg of Ranatra linearis, Mantispa lobata and the hind leg in Carabus coriaceus (confirming observations of previous authors), 40-60 degrees in the foreleg of Vespa crabro and in the middle one in Ammophila campestris, 10-30 degrees in other studied specimens. The special role of the trochanter in autotomy and in active propulsion in some insect groups is discussed. The majority of insects possess small trochanters and slightly movable TFJs with the joint axis laying in the femur-tibia plane. We pose the hypothesis that the TFJ damps external forces, the vectors of which lie off the femur-tibia plane, the reductor muscle acting as a spring. Thus the TFJ contributes to dynamic stability of legged locomotion.  相似文献   

12.
13.
The insect antenna and leg are considered homologous structures, likely to have arisen via duplication and divergence from an ancestral limb. Consistent with this, the antenna and leg are derived from primordia with similar developmental potentials. Nonetheless, the adult structures differ in both form and function. In Drosophila, one conspicuous morphological difference is that the antenna has fewer distal segments than the leg. We propose that this is due in part to the variations in the regulation of bric a brac. bric a brac is required for joint formation, and loss of bric a brac function leads to fusion of distal antennal and leg segments, resulting in fewer total segments. Here, we address how bric a brac is regulated to generate the mature expression patterns of two concentric rings in the antenna versus four concentric rings in the leg. We find that bric a brac expression is activated early throughout most of the Distal-less domain in both antenna and leg and subsequently is restricted to the distal portion and into rings. Although bric a brac expression in the antenna and in all four tarsal rings of the leg requires Distal-less, only the proximal three tarsal rings are Spineless-dependent. Thus bric a brac is regulated differentially even within a single appendage type. The restriction of bric a brac expression to the distal portion of the Distal-less domain is a consequence of negative regulation by distinct sets of genes in different limb types. In the leg, the proximal boundary of bric a brac is established by the medial-patterning gene dachshund, but dachshund alone is insufficient to repress bric a brac, and the expression of the two genes overlaps. In the antenna, the proximal boundary of bric a brac is established by an antenna-specifying gene, homothorax, in conjunction with dachshund and spalt, and there is much less overlap between the bric a brac and the dachshund domains. Thus tissue-specific expression of other patterning genes that differentially repress bric a brac accounts for antenna-leg differences in bric a brac pattern. We propose that the limb type-specific variations in expression of bric a brac repressors contribute to morphological variations by controlling distal limb segment number.  相似文献   

14.
Proximodistal patterning in the Drosophila leg is elaborated from the circular arrangement of the proximal domain expressing escargot and homothorax, and the distal domain expressing Distal-less that are allocated during embryogenesis. The distal domain differentiates multiply segmented distal appendages by activating additional genes such as dachshund. Secreted signaling molecules Wingless and Decapentaplegic, expressed along the anterior-posterior compartment boundary, are required for activation of Distal-less and dachshund and repression of homothorax in the distal domain. However, whether Wingless and Decapentaplegic are sufficient for the circular pattern of gene expression is not known. Here we show that a proximal gene escargot and its activator homothorax regulate proximodistal patterning in the distal domain. Clones of cells expressing escargot or homothorax placed in the distal domain induce intercalary expression of dachshund in surrounding cells and reorient planar cell polarity of those cells. Escargot and homothorax-expressing cells also sort out from other cells in the distal domain. We suggest that inductive cell communication between the proximodistal domains, which is maintained in part by a cell-sorting mechanism, is the cellular basis for an intercalary mechanism of the proximodistal axis patterning of the limb.  相似文献   

15.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

16.
Fragments from prospective distal regions of Drosophila male foreleg imaginal discs failed to undergo proximal intercalary regeneration across leg segment borders when mechanically intermixed and cultured for 8 days with various fragments from prospective proximal disc regions. The failure of the distal cells to regenerate proximal leg segments was not due to a general restriction in their developmental potentials: Distal fragments, when deprived of their distal-most tips, regenerated in the distal direction at a high frequency. It is concluded that there exist in Drosophila leg discs the same restrictions with respect to regeneration along the proximodistal leg axis as had been previously observed in legs of several hemimetabolous insect species: Intersegmental discontinuities between grafted tissue pieces are not eliminated by intercalation. Based on the available evidence in hemimetabolous insects and in Drosophila, a new interpretation of the different aspects of regeneration in insect legs is offered. It is proposed that the two categories of regulative fields observed in insect legs, the leg segment fields and the whole leg field, represent the units of regulation for two fundamentally different regulative pathways that a cell at a wound edge can follow, the intercalative pathway and the terminal pathway, respectively. It is suggested that the criterion used by cells at healing wounds to choose between the two pathways is the difference in circumferential positional information between juxtaposed cells. The intercalative regulative pathway is switched on when cells with disparities in their axial positional information, or cells with less than maximal disparities in their circumferential information, contact one another. The terminal regulative pathway is triggered whenever cells with maximal circumferential disparities come into contact.  相似文献   

17.
One function of the Wingless signaling pathway is to determine the naked, cuticle cell fate choice in the trunk epidermis of Drosophila larvae. The zinc finger protein Teashirt binds to the transactivator domain of Armadillo to modulate Wingless signaling output in the embryonic trunk and contributes to the naked cell fate choice. The Hedgehog pathway is also necessary for the correct specification of larval epidermal cell fate, which signals via the zinc finger protein, Cubitus interruptus. Here, we show that Cubitus interruptus also has a Wingless-independent function, which is required for the specification of the naked cell fate; previously, it had been assumed that Ci induces naked cuticle exclusively by regulation of wg. Wg and Hh signaling pathways may be acting combinatorially in the same, or individually in different, cells for this process, by regulating common sets of target genes. First, the loss of the naked cuticular phenotype in embryos lacking cubitus interruptus activity is very similar to that induced by a late loss of Wingless function. Second, overexpression of Cubitus interruptus causes the suppression of denticles (as Wingless does) in absence of Wingless activity in the anterior trunk. Using epistasis experiments, we conclude that different combinations of the three proteins Teashirt, Cubitus interruptus, and Armadillo are employed for the specification of naked cuticle at distinct positions both along the antero-posterior axis and within individual trunk segments. Finally, biochemical approaches suggest the existence of protein complexes consisting of Teashirt, Cubitus interruptus, and Armadillo.  相似文献   

18.
Grafting operations were performed on the metathoracic legs of fourth instar Oncopeltus fasciatus within 24 hr after ecdysis. Different levels along the tibia were combined so that a lengthened tibia, approximately 1.5 times the normal length, or a shortened tibia, about half the normal length, were created. Intercalary regeneration occurred between the graft and stump in both combinations and the extra tissue was visible on the adult leg. The intercalary regenerate produced by the lengthened tibia showed reversed bristle polarity, while that produced in the shortened segment showed normal polarity. It is suggested that a regenerate with reversed polarity represents a mirror image duplication of the graft and might originate from the graft, whereas a regenerate with normal polarity may originate, as in normal regeneration, from the stump. It appears that each level in the appendage has the developmental capacity to produce only more distal structures. This conclusion is supported by the results of a grafting operation in which a portion of the tibia was grafted back on to the stump with its proximo-distal axis reversed. Regeneration of appropriate distal structures proceeded from the free proximal surface of the grafted tibia.  相似文献   

19.
Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.  相似文献   

20.
Flexible joints separate the rigid sections of the insect leg, allowing them to move. In Drosophila, the initial patterning of these joints is apparent in the larval imaginal discs from which the adult legs will develop. Here, we describe the later patterning and morphogenesis of the joints, which occurs after pupariation (AP). In the tibial/tarsal joint, the apodeme insertion site provides a fixed marker for the boundary between proximal and distal joint territories (the P/D boundary). Cells on either side of this boundary behave differently during morphogenesis. Morphogenesis begins with the apical constriction of distal joint cells, about 24 h AP. Distal cells then become columnar, causing distal tissue nearest the P/D boundary to fold into the leg. In the last stage of joint morphogenesis, the proximal joint cells closest to the P/D boundary align and elongate to form a "palisade" (a row of columnar cells) over the distal joint cells. The proximal and distal joint territories are characterised by the differential organisation of cytoskeletal and extracellular matrix proteins, and by the differential expression of enhancer trap lines and other gene markers. These markers also define a number of more localised territories within the pupal joint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号