首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An antibody response against a thymic-dependent Ag requires cognate recognition of the Ag by B and T cells. Functional T-B cell (T-B) interaction involves binding of Ag by B cell surface Ig, internalization and processing of Ag, expression of an Ag fragment in the context of Ia, binding of Ag/Ia by the TCR and binding of T cell-derived lymphokines by B cell lymphokine receptors. It is becoming increasingly evident that B and T cell accessory molecules also are involved in T-B interactions. To determine the role of accessory molecules in T-B collaboration, we have designed a system in which T-B interaction was artificially induced in the absence of carrier protein. TNP-modified, turkey gamma-globulin-specific, Th cells were allowed to form conjugates with TNP-specific B cells in the absence of hapten-carrier complex. Both B and T cells were induced to proliferate and B cells partially differentiated into antibody-secreting cells when B cells were cultured with TNP-modified but not unmodified T cells. The activation of B cells by TNP-modified T cells was not MHC restricted but was blocked by anti-Ia antibodies, suggesting a role for Ia distinct from Ag presentation. Furthermore, B cell proliferation was also inhibited by antibodies to L3T4 and LFA-1, suggesting a functional accessory role for these molecules in induction of B cell proliferation/differentiation.  相似文献   

2.
Receptor-like nature of class I HLA: endocytosis via coated pits   总被引:3,自引:0,他引:3  
The present investigations show that class I HLA are internalized by macrophage/monocyte type cells. Anti-class I antibody-binding assays show that about 30% of class I Ag present on cell surface are endocytosed within 1 h. Electronmicroscopic investigations reveal that, like other well established receptor molecules, internalization of HLA is mediated by coated pits and coated vesicles. The endocytosed Ag are transferred from endosomes to trans-Golgi reticulum and trans-Golgi cisternae, suggesting recycling of these Ag back to the cell surface. In the presence of phorbol ester tetradecanoyl phorbol acetate, there is a modest increase in the rate of internalization. These results are consistent with the hypothesis that class I Ag on monocytes/macrophages behave like receptor molecules. Malignant transformation of monocytic cells apparently causes the loss of this property of class I Ag.  相似文献   

3.
In previous experiments the surface expression of epidermal growth factor (EGF) receptors in freshly isolated rat hepatocytes varied temperature- and time-dependently and was depleted by monensin and cycloheximide in a way suggesting that a subpopulation of these receptors are subject to constitutive cycling (Gladhaug and Christoffersen; 1988). We here report the finding that pretreatment of the hepatocytes with amiloride exerts marked effects on cellular EGF receptor movements. After 2 h incubation with 1 mM amiloride, the receptor level was approximately 270,000 sites/cell surface vs. 140,000 in the untreated cell, with no change in receptor affinity. Amiloride thus stabilized the surface EGF receptor pool at an elevated level. In cells pretreated with amiloride for 60 min, the relative endocytosis decreased from about 2.6 EGF molecules internalized per receptor during 15 min endocytosis in untreated cells to about 1.5 molecules/receptor in amiloride-treated cells. These results suggest that amiloride causes an accumulation of EGF receptors at the hepatocyte surface due to inhibition of constitutive receptor internalization. In addition, it was found that in amiloride-treated hepatocytes the phorbol ester TPA strongly inhibited high-affinity EGF binding without affecting the total surface receptor number. In control cells, TPA did not consistently affect binding. Pretreatment with amiloride prevented surface EGF receptor depletion induced by cycloheximide and puromycin, but it did not significantly inhibit surface receptor depletion caused by monensin. Although the underlying mechanism of the amiloride effect on intracellular receptor trafficking is not clear, the results provide further evidence for a continuous, ligand-independent EGF receptor cycling pathway in hepatocytes.  相似文献   

4.
The activation of T lymphocytes for immunity to the intracellular pathogen Listeria monocytogenes requires that Ia-positive macrophages ingest the bacteria. The subsequent handling of Listeria by macrophages was examined in this report and related to antigen presentation to T cells. Macrophages pulsed with radiolabeled Listeria, besides releasing acid-soluble radioactivity--an indication of extensive catabolism of the Listeria-derived proteins--were also found to release acid-insoluble peptides. The rate of release of the peptides was not markedly affected by treatment with chloroquine, ammonia, or monensin and was independent of the state of activation and the level of Ia expression of the macrophage. The peptides were not associated with fragments of membranes and were represented by several molecular species. Listeria-derived peptides were also found associated with the macrophage plasma membrane. The membrane-associated peptides behaved like integral membrane proteins and could be released by proteases or detergents. Their expression was independent of the dose of Listeria and the level of Ia expression of the macrophage, and their presence could not be inhibited by protease inhibitors or chloroquine. The Listeria peptides released by the macrophages were very weakly immunogenic in a T cell proliferation assay. Purified plasma membranes from Listeria-pulsed macrophages, which contained membrane-associated Listeria peptides, were not immunogenic by themselves but could be reprocessed by additional macrophages to subsequently stimulate T cells. Trypsin treatment of Listeria-pulsed macrophages did not cause a significant reduction in their ability to stimulate T cells. No association was found between Ia molecules and either the membrane-associated or the released peptides with the use of several technical approaches. Hence, after internalization of Listeria, potentially immunogenic material can be found at the cell surface as well as in the culture fluid. The release of soluble peptides is a clear indication that proteins can be recycled after their internalization in vesicles.  相似文献   

5.
Phosphorylation of membrane glycoproteins has often been invoked as a determinant of receptor internalization and receptor trafficking in a more general sense. Here we have studied the trafficking of major histocompatibility complex (MHC) Class I molecules and transferrin receptor (Tfr) related to their phosphorylation status in the human lymphoblastoid cell line JY. High resolution isoelectric focusing (IEF) allows the visualization of phosphorylated and non-phosphorylated protein species simultaneously, using protein backbone-labeling. Analysis on IEF was combined with a neuraminidase protection assay, in which sialic acid modification of the N-linked glycans present on Tfr and Class I molecules is used as a reporter group for cell surface expression. Phosphorylation of Class I heavy chains and Tfr was induced by exposure of cells to the phorbol ester tetradecanoyl phorbol acetate. We show that 1) phosphorylation of MHC Class I molecules is restricted to the cell surface fraction, 2) phosphorylation of MHC Class I molecules by protein kinase C (PKC) is not correlated with their internalization, as no internalization of Class I molecules, phosphorylated or non-phosphorylated, could be detected, 3) the initial rate, but not the final extent of the internalization of Tfr is affected by activation of PKC, and 4) phosphorylated Tfr behaves in a manner identical to non-phosphorylated Tfr in terms of internalization. The effect of activation of PKC on internalization of Tfr therefore most likely takes place at the level of the internalization machinery. Our data concerning the internalization of MHC Class I molecules contrast with earlier studies describing constitutive internalization in the B lymphoblastoid cell line A 46 and in HPB-ALL cells.  相似文献   

6.
The generation of antibody secretory cells from resting B lymphocytes after immunization with most protein Ag requires B cell signaling by Ag, direct Th cell contact and lymphokines. Previous studies suggest that cell contact-mediated signals may be transduced by Ia after Ia binding by alpha beta TCR and/or CD4. Seemingly inconsistent with this concept are findings that cross-linking of Ia molecules on quiescent B cells leads to cAMP generation that is antagonistic for B cell mitogenesis. Here we show that ligand binding to IL-4 and Ag receptors on quiescent B cells induce transition of these cells into a competent state in which Ia molecules transduce signals via a distinct mechanism. This mechanism involves the tyrosine kinase-dependent activation of phospholipase C leading to Ca2+ mobilization from intracellular stores and the extracellular space. This competence, which is seen within 4 h of priming, is not simply a function of increased Ia expression by the B cell because the response can be induced by cross-linking of less than 5% of cell surface Ia molecules on primed cells. Finally, cross-linking of Ia molecules leads to more than fivefold greater increase in [Ca2+]i than is induced by membrane Ig ligation. These findings are consistent with alpha beta TCR/CD4 delivery via Ia of proliferative signals mediated by tyrosine kinase activation, phosphoinositide hydrolysis and Ca2+ mobilization.  相似文献   

7.
CD5 is a key regulator of Ag receptor-mediated activation, selection, and differentiation in both T and B cells. Accumulating evidence indicates that lymphocyte activation and selection are sensitive to variations in levels of CD5 on the cell surface. We now show that CD5 expression on the surface of B and T cells is regulated posttranslationally by direct interaction with the mu(2) subunit of the AP2 adaptor complex that links transmembrane proteins to clathrin-coated pits. CD5 is rapidly internalized from the cell surface in lymphoid cell lines, mature splenic T and B cells, and peritoneal CD5(+) B cells following monovalent or bivalent ligation of the receptor. We mapped the mu(2) subunit binding site on CD5 to Y(429) and determined that the integrity of this site was necessary for CD5 internalization. Cross-linking of the Ag receptor with intact Abs inhibited CD5 internalization in B cells, but had the opposite effect in T cells. However, if F(ab')(2) Abs were used to stimulate the Ag receptor in B cells, the effect on CD5 internalization was now similar to that observed in T cells, indicating that signals through the Ag receptor and FcR regulate CD5 endocytosis in B cells. This was confirmed using an FcgammaRIIB1-deficient B cell line. The ability to differentially alter posttranslational CD5 expression in T and B cells is likely to be key in regulation of Ag receptor signaling and generation of tolerance in T and B lymphocytes.  相似文献   

8.
We have shown previously that specific Ag presentation is prevented by the inhibition of protein synthesis but nonspecific presentation is not. In the present paper, Ag presentation by Ag-specific B cells was examined for sensitivity to brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum. A20-HL B lymphoma expressing surface receptors specific for TNP was used as a B cell, and TNP-OVA was used as a specific Ag. The presence of BFA during pulsing of A20-HL cells with TNP-OVA inhibited the ability of the pulsed cells to stimulate 42-6A T cell clone, specific for OVA323-339 and Iad. The inhibition was not due to nonspecific toxicity of BFA, because the presence of BFA during pulsing of A20-HL cells with OVA323-339 did not affect their APC function. Ag binding to the receptor on A20-HL cells and internalization by the cells were observed in the presence of BFA. Thus, BFA might inhibit intracellular processing of specific Ag or intracellular complex formation of antigenic peptide from specific Ag with MHC class II molecules. Nonspecific Ag presentation by A20-HL cells, however, was resistant to BFA. A20-HL cells pulsed with OVA in the presence of BFA, even after fixation, could stimulate 42-6A cells to produce IL-2, although the IL-2 production was lower than that induced by A20-HL cells pulsed in the absence of BFA. These results suggest that the processing pathways for specific Ag and nonspecific Ag are different from each other, at least partly, in A20-HL cells.  相似文献   

9.
The Ag-specific B cell receptor (BCR) expressed by B lymphocytes has two distinct functions upon interaction with cognate Ag: signal transduction (generation of intracellular second messenger molecules) and Ag internalization for subsequent processing and presentation. While it is known that plasma membrane domains, termed lipid rafts, are involved in BCR-mediated signal transduction, the precise role of plasma membrane lipid rafts in BCR-mediated Ag internalization and intracellular trafficking is presently unclear. Using a highly characterized model system, it was determined that while plasma membrane lipid rafts can be internalized by B lymphocytes, lipid rafts do not represent a major pathway for the rapid and efficient internalization of cell surface Ag-BCR complexes. Moreover, internalized plasma membrane lipid rafts are delivered to intracellular compartments distinct from those to which the bulk of internalized Ag-BCR complexes are delivered. These results demonstrate that B lymphocytes, like other cell types, possess at least two distinct endocytic pathways (i.e., clathrin-coated pits and plasma membrane lipid rafts) that deliver internalized ligands to distinct intracellular compartments. Furthermore, Ag-BCR complexes differentially access these two distinct internalization pathways.  相似文献   

10.
Mouse B-cell line, established by culturing anti-Thy-1 and complement-treated splenic B cells with concanavalin A-stimulated conditioned medium, expressed immunoglobulins and Ia antigens on its surface. The long-term-cultured B-cell line was split in two and maintained with or without 3300 R X-irradiated T-cell-depleted syngeneic splenic adherent cells (SAC). Interestingly, the B-cell line cultured without SAC lost its Ia antigen but not its Ig expression, whereas the cell line with SAC maintained both Ia and Ig expression. The ability to express Ia antigens was restored by culturing them only in the presence of Ia-positive feeder cells. Neither recombinant interferon-gamma or lectin-stimulated conditioned medium nor cell-free culture supernatant SAC had the ability to restore Ia antigen expression on the B-cell line. Incubation of Ia-negative B-cell line with phorbol esters restored the Ia expression. It is suggested that the expression of Ia antigen on B lymphocytes was controlled differently from that on macrophage lineage. The B-cell line expressing Ia antigens acts as stimulator cells for alloantigen-activated T lymphocytes and as antigen-presenting cells on the KLH-specific Ia-restricted proliferative T-cell clone in the presence of a specific antigen.  相似文献   

11.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

12.
The T4 (CD4) molecule has been shown to facilitate the interactions of T cells with HLA class II determinants, to function as a signal transducing molecule, and to serve as a receptor for HIV. Recent studies demonstrated that both phorbol esters and antigen stimulation induced the rapid and transient modulation and phosphorylation of T4 on an IL-2-dependent line of cloned peripheral blood T4+ cells. In the current study, we define the kinetics of T4 phosphorylation and internalization induced by phorbol esters and determine the extent to which this metabolic pathway is required for T cell proliferation, activation, and HIV infection. On both peripheral blood T4+ cells and the T cell line Sup-T1, the modulation and internalization of surface T4 induced by phorbol 12, 13-dibutyrate (PDB) was preceded by rapid and transient phosphorylation. On both cell types, by 48 h, T4 was reexpressed on the cell surface in a nonphosphorylated form and was shown to be resistant to phosphorylation and internalization when these cells were reexposed to PDB. In contrast, T4 on the surface of PBL was neither phosphorylated nor down-modulated when PBL were stimulated by PHA, indicating that these effects were not simply the result of T cell activation or proliferation. In additional studies, we demonstrate that this pathway for T4 phosphorylation and internalization is not required for HIV infection by showing that 1) the binding of the HIV gp 120 envelope to T4 does not induce phosphorylation of T4, 2) Sup-T1 cells that are rendered resistant to phorbol ester-induced T4 internalization and phosphorylation by prolonged culture in PDB remain highly susceptible to HIV infection, and 3) clones of HIV-producing cells expressing high levels of surface T4 that is complexed with viral envelope remain susceptible to PDB-induced modulation of T4. This observation suggests that, at least on lymphoid cells, HIV penetration does not occur exclusively by R-mediated endocytosis.  相似文献   

13.
Macrophages present exogenous Ag either via MHC class I or MHC class II molecules. We investigated whether the mode of hemagglutinin (HA) uptake influences the class of MHC molecule by which this Ag is presented. Normally, HA is ingested by receptor-mediated endocytosis, but this may be switched to macropinocytosis and pinocytosis by adding phorbol esters to the cells. This switch resulted in altered intracellular routing of ingested Ag and a transition from Ag presentation via MHC class II molecules to presentation via MHC class I molecules. Similarly, inhibition of receptor-mediated HA endocytosis, by treating the cells with the HA receptor destroying enzyme neuraminidase, abrogated Ag presentation via MHC class II molecules and induced presentation via MHC class I molecules. If, however, under these conditions, receptor-mediated uptake of HA was restored, by virtue of HA/anti-HA Ab interaction and subsequent uptake of HA via the Fc receptor, presentation via MHC class II was restored as well, whereas presentation of HA via MHC class I molecules was no longer detectable. We conclude that in macrophages the mode of Ag uptake is decisive in determining via which class of MHC molecules Ag is presented: pinocytosis and macropinocytosis produce exclusive presentation of exogenous Ag via MHC class I molecules whereas receptor-mediated endocytosis leads exclusively to presentation via class II molecules.  相似文献   

14.
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells.  相似文献   

15.
The intracellular movement of cell surface transferrin receptor (TfR) after internalization was studied in K562 cultured human erythroleukemia cells. The sialic acid residues of the TfR glycoprotein were used to monitor transport to the Golgi complex, the site of sialyltransferases. Surface-labeled cells were treated with neuraminidase, and readdition of sialic acid residues, monitored by isoelectric focusing of immunoprecipitated TfR, was used to assess the movement of receptor to sialyltransferase-containing compartments. Asialo-TfR was resialylated by the cells with a half-time of 2-3 h. Resialylation occurred in an intracellular organelle, since it was inhibited by treatments that allow internalization of surface components but block transfer out of the endosomal compartment. Moreover, roughly half of the resialylated molecules were cleaved when cells were retreated with neuraminidase after culturing, indicating that this fraction of the molecules had returned to the cell surface. These results suggest that TfR is transported from the cell surface to the Golgi complex, the intracellular site of sialyltransferases, and then returns to the cell surface. This pathway, which has not been previously described for a cell surface receptor, may be different from the route followed by TfR in iron uptake, since reported rates of transferrin uptake and release are significantly more rapid than the resialylation of asialo-TfR.  相似文献   

16.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

17.
The transferrin receptor is a target protein for phosphorylation by activated intracellular protein kinase C (May, W. S., Sahyoun, N., Jacobs, S., Wolf, M., and Cuatrecasas, P. (1985) J. Biol. Chem. 260, 9419-9426). Recently we reported that the potent tumor-promoting agent phorbol diester or a synthetic diacylglycerol could mediate rapid down-regulation of the surface transferrin receptor in association with receptor phosphorylation in HL60 leukemic cells and suggested that this phosphorylation may provide a signal for receptor internalization. In this communication we have tested experimentally the predictions generated by the hypothesis that receptor phosphorylation may play such a role in the intracellular cycling of the transferrin receptor. Results indicate that phorbol diester-stimulated phosphorylation occurs stoichiometrically only on the surface-oriented receptor and precedes internalization. Using a specific inhibitor of protein kinase C, it was found that both phorbol diester-mediated receptor phosphorylation and down-regulation could be antagonized. While the mechanism of internalization of the phosphorylated receptor is not clear, phorbol diester treatment significantly increases the rate constant for endocytosis from 0.183 to 0.462 min-1, while inhibiting only slightly the rate constant for exocytosis of the internalized receptor from 0.113 to 0.079 min-1. Thus, we conclude that phorbol diester treatment affects intracellular cycling of receptors and establishes a new steady state distribution of surface and intracellular receptors. These data support a role for receptor phosphorylation as a trigger for internalization primarily by stimulating the process of transferrin receptor endocytosis while affecting the subsequent exocytosis of the receptor cycling only slightly.  相似文献   

18.
Anti-I-A mAb and monovalent Fab fragments were used to explore the cellular distribution and endocytosis of I-A in peritoneal exudate cells (PEC) and TA3 B lymphoma-hybridoma cells. TA3 cells contained 1.6 x 10(5) I-A sites/cell, 22 to 35% of which were intracellular. This intracellular pool was cycloheximide resistant. PEC contained 1.8 x 10(5) I-A sites/cell, 25 to 40% of which were intracellular. Upon adherence, however, the intracellular pool of I-A in PEC dropped to 2 to 11% of the total cellular I-A. Ag processing by TA3 cells was unaffected 3 h after abrogation of protein synthesis with cycloheximide, suggesting that newly synthesized I-A is not necessary for Ag processing in TA3 cells (post-synthetic processing and transport of I-A to the plasma membrane were complete by 2 h in TA3 cells with or without cycloheximide, as assessed by sequential immunoprecipitation of surface and intracellular I-A). In adherent PEC, however, cycloheximide markedly inhibited Ag processing, suggesting depletion of factors necessary for Ag processing. Ag processing may involve binding of processed Ag peptides to intracellular Ia derived to varying degrees from both endocytosis and new biosynthesis. To explore the possibility of I-A recycling, I-A endocytosis was demonstrated using mAb and monovalent Fab probes; internalization occurred within 5 min and peaked by 10 to 15 min with 15 to 35% of bound antibody in an intracellular compartment, resistant to an acid wash. Subcellular density gradient fractionation demonstrated that I-A and transferrin were processed exclusively in an endosomal fraction of relatively light density, whereas ligands of the mannose receptor were processed in light endosomes and in a distinct, denser population of endosomes, and accumulated in lysosomes. Thus, I-A appears to be internalized into a specific population of endosomes that may play a central role in Ag processing.  相似文献   

19.
It was previously demonstrated that freshly isolated rat hepatocytes can internalize severalfold more epidermal growth factor (EGF) molecules than the number of surface EGF receptors, suggesting extensive reutilization of receptors during endocytosis (Gladhaug, I. P. & Christoffersen, T. (1987) Eur. J. Biochem. 164, 267-275). The present report attempts to explore the pathways involved in the externalization of EGF receptors. Incubation of hepatocytes at 37 degrees C in the absence of ligand increased the surface receptor pool by 50-100% within 45 min. Pretreatment with monensin inhibited the turnover of the surface EGF receptor pool by 50-60% within 10 min and blocked the temperature-dependent externalization of receptors. Cycloheximide caused a slower attenuation of the surface receptor pool, whereas tunicamycin and chloroquine did not significantly affect the exchange of receptor pools. Monensin reduced the surface receptor pool and the endocytic uptake in corresponding proportions, without affecting the internalization of prebound EGF. Endocytic uptake was unaffected by chloroquine and slightly reduced by cycloheximide. The internalization of unoccupied receptors and the endocytosis of prebound EGF followed similar kinetics (t1/2 approximately 5 min), suggesting that unoccupied receptors are internalized at a rate comparable to that of occupied receptors. The results suggest that there is a rapid turnover of the surface pool of EGF receptors with constitutive internalization of unoccupied surface receptors and externalization of internal receptors. This is consistent with, but does not prove, a true recycling of the EGF receptors in the hepatocytes. The monensin-sensitive externalization pathway determines the capacity for continued endocytosis of EGF.  相似文献   

20.
The production of antibody to a thymus-dependent Ag requires cooperation between the B cell and an Ag-specific Th cell. MHC restriction of this interaction implies that the Th cell recognizes Ag on the B cell surface in the context of MHC molecules and that the Ag-specific B cell gets help by acting as an APC for the Th cell. However, a number of studies have suggested that normal resting B cells are ineffective as APC, implying that the B cell must leave the resting state before it can interact specifically with a Th cell. Other studies, including our own with rabbit globulin-specific mouse T cell lines and hybridomas, show that certain T cell lines can be efficiently stimulated by normal resting B cells. One possible explanation for the above contradiction is that our B cells have become activated before presentation. Here we show that presentation by size-selected small B cells is not the result of nonspecific activation signals generated by the T cells or components of the medium. Also, although LPS activation does increase the efficiency of presentation by small B cells, use of large cells in place of small cells or preincubation of resting B cells with mitogenic doses of anti-Ig does not. Another possibility that we considered was that small B cells are unable to process Ag and that we had selected T cell lines that were capable of recognizing native Ag on the B cell surface. In the majority of cases, experiments with B cell lines and macrophages have shown that Ag presentation requires Ag processing, a sequence of events that includes internalization of Ag into an acid compartment, denaturation or digestion of Ag into fragments, and its return to the cell surface in the context of class II MHC molecules. The experiments reported here show that our T cell lines require an Ag processing step and that small resting B cells, like other APC, process Ag before presenting it to T cells. Specifically, we show that an incubation of 2 to 4 h is required after the Ag pulse before Ag presentation becomes resistant to irradiation. Shortly after the pulse, the Ag enters a pronase-resistant compartment. Although efficient Ag presentation requires initial binding to membrane Ig, Ag is no longer associated with membrane Ig at the time of presentation and is not presented in its intact form, because removal of membrane Ig by goat anti-Ig blocks presentation before but not after the Ag pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号