首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High mobility group box 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. During infection or injury, activated immune cells and damaged cells release HMGB1 into the extracellular space, where HMGB1 functions as a proinflammatory mediator and contributes importantly to the pathogenesis of infl ammatory diseases. Recent studies reveal that inflammasomes, intracellular protein complexes, critically regulate HMGB1 release from activated immune cells in response to a variety of exogenous and endogenous danger signals. Double stranded RNA dependent kinase (PKR), an intracellular danger-sensing molecule, physically interacts with inflammasome components and is important for inflammasome activation and HMGB1 release. Together, these studies not only unravel novel mechanisms of HMGB1 release during infl ammation, but also provide potential therapeutic targets to treat HMGB1-related infl ammatory diseases.  相似文献   

2.
Phagocytosis of apoptotic cells, also called efferocytosis, is an essential feature of immune responses and critical to resolution of inflammation. Impaired efferocytosis is associated with an unfavorable outcome from inflammatory diseases, including acute lung injury and pulmonary manifestations of cystic fibrosis. High mobility group protein-1 (HMGB1), a nuclear nonhistone DNA-binding protein, has recently been found to be secreted by immune cells upon stimulation with LPS and cytokines. Plasma and tissue levels of HMGB1 are elevated for prolonged periods in chronic and acute inflammatory conditions, including sepsis, rheumatoid arthritis, acute lung injury, burns, and hemorrhage. In this study, we found that HMGB1 inhibits phagocytosis of apoptotic neutrophils by macrophages in vivo and in vitro. Phosphatidylserine (PS) is directly involved in the inhibition of phagocytosis by HMGB1, as blockade of HMGB1 by PS eliminates the effects of HMGB1 on efferocytosis. Confocal and fluorescence resonance energy transfer demonstrate that HMGB1 interacts with PS on the neutrophil surface. However, HMGB1 does not inhibit PS-independent phagocytosis of viable neutrophils. Bronchoalveolar lavage fluid from Scnn(+) mice, a murine model of cystic fibrosis lung disease which contains elevated concentrations of HMGB1, inhibits neutrophil efferocytosis. Anti-HMGB1 Abs reverse the inhibitory effect of Scnn(+) bronchoalveolar lavage on efferocytosis, showing that this effect is due to HMGB1. These findings demonstrate that HMGB1 can modulate phagocytosis of apoptotic neutrophils and suggest an alternative mechanism by which HMGB1 is involved in enhancing inflammatory responses.  相似文献   

3.
Tang LM  Lu ZQ  Yao YM 《生理科学进展》2011,42(3):188-194
高迁移率族蛋白B1(HMGB1)是一种高度保守的核蛋白,具有调控DNA稳定、复制、转录及翻译等功能.近年来的研究表明,它通过主动或被动的方式被释放至细胞外,并作为一种晚期炎症介质,参与脓毒症等炎症性疾病的发病过程,同时也可作为一种免疫"预警信号"调控机体免疫反应.本文综述了HMGB1的结构、分泌机制、受体信号通路及其对细胞免疫的调控作用.  相似文献   

4.
Apoptotic cells trigger immune tolerance in engulfing phagocytes. This poorly understood process is believed to contribute to the severe immunosuppression and increased susceptibility to nosocomial infections observed in critically ill sepsis patients. Extracellular high mobility group box 1 (HMGB1) is an important mediator of both sepsis lethality and the induction of immune tolerance by apoptotic cells. We have found that HMGB1 is sensitive to processing by caspase-1, resulting in the production of a fragment within its N-terminal DNA-binding domain (the A-box) that signals through the receptor for advanced glycation end products (RAGE) to reverse apoptosis-induced tolerance. In a two-hit mouse model of sepsis, we show that tolerance to a secondary infection and its associated mortality were effectively reversed by active immunization with dendritic cells treated with HMGB1 or the A-box fragment, but not a noncleavable form of HMGB1. These findings represent a novel link between caspase-1 and HMGB1, with potential therapeutic implications in infectious and inflammatory diseases.  相似文献   

5.
Although originally described as a highly conserved nuclear protein, high-mobility group box 1 protein (HMGB1) has emerged as a danger-associated molecular pattern molecule protein (DAMP) and is a mediator of innate and specific immune responses. HMGB1 is passively or actively released in response to infection, injury and cellular stress, providing chemotactic and cytokine-like functions in the extracellular environment, where it interacts with receptors such as receptor for advanced glycation end products (RAGE) and several Toll-like receptors (TLRs). Although HMGB1 was first revealed as a key mediator of sepsis, it also contributes to a number of other conditions and disease processes. Chronic pain arises as a direct consequence of injury, inflammation or diseases affecting the somatosensory system and can be devastating for the affected patients. Emerging data indicate that HMGB1 is also involved in the pathology of persistent pain. Here, we give an overview of HMGB1 as a proinflammatory mediator, focusing particularly on the role of HMGB1 in the induction and maintenance of hypersensitivity in experimental models of pain and discuss the therapeutic potential of targeting HMGB1 in conditions of chronic pain.  相似文献   

6.
Tumor progression requires the communication between tumor cells and tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are major components of stromal cells. CAFs contribute to metastasis process through direct or indirect interaction with tumor cells; however, the underlying mechanism is largely unknown. Here, we reported that autophagy was upregulated in lung cancer-associated CAFs compared to normal fibroblasts (NFs), and autophagy was responsible for the promoting effect of CAFs on non-small cell lung cancer (NSCLC) cell migration and invasion. Inhibition of CAFs autophagy attenuated their regulation on epithelial–mesenchymal transition (EMT) and metastasis-related genes of NSCLC cells. High mobility group box 1 (HMGB1) secreted by CAFs mediated CAFs’ effect on lung cancer cell invasion, demonstrated by using recombinant HMGB1, HMGB1 neutralizing antibody, and HMGB1 inhibitor glycyrrhizin (GA). Importantly, the autophagy blockade of CAFs revealed that HMGB1 release was dependent on autophagy. We also found HMGB1 was responsible, at least in part, for autophagy activation of CAFs, suggesting CAFs remain active through an autocrine HMGB1 loop. Further study demonstrated that HMGB1 facilitated lung cancer cell invasion by activating the NFκB pathway. In a mouse xenograft model, the autophagy specific inhibitor chloroquine abolished the stimulating effect of CAFs on tumor growth. These results elucidated an oncogenic function for secretory autophagy in lung cancer-associated CAFs that promotes metastasis potential, and suggested HMGB1 as a novel therapeutic target.Subject terms: Cancer microenvironment, Non-small-cell lung cancer, Metastasis, Translational research  相似文献   

7.
8.
HMGB1 is a member of highly conserved high mobility group protein superfamily with intracellular and extracellular distribution. Abnormal HMGB1 levels are frequently manifested in various malignant diseases, including breast cancer. Numerous studies have revealed the clinical value of HMGB1 in the diagnosis and therapy of breast cancer. However, the dual function of pro- and anti-tumor makes HMGB1 in cancer progression requires more profound understanding. This review summarizes the functions and mechanisms of HMGB1 on regulating breast cancer, including autophagy, immunogenic cell death, and interaction with the tumor microenvironment. These functions determine the strategies for the development of chemotherapy, radiotherapy, immunotherapy and combination therapies by targeting HMGB1 in breast cancer. Defining the mechanisms of HMGB1 on regulating breast cancer development and progression will facilitate the application of HMGB1 as a therapeutic target for breast cancer.  相似文献   

9.
Septic diseases represent the prevalent complications in intensive care units. Luteolin, a plant flavonoid, has potent anti-inflammatory properties; however, the molecular mechanism beneath luteolin mediated immune modulation remains unclear. Here in vitro investigations showed that luteolin dose-dependently inhibited LPS-triggered secretion and relocation of high mobility group B-1 (HMGB1) and LPS-induced production of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) in macrophages. The mechanism analysis demonstrated that luteolin reduced the release of HMGB1 through destabilizing c-Jun and suppressed HMGB1-induced aggravation of inflammatory cascade through reducing Akt protein level. As an inhibitor of Hsp90, luteolin destabilized Hsp90 client protein c-Jun and Akt. In vivo investigations showed that luteolin effectively protected mice from lipopolysaccharide (LPS)-induced lethality. In conclusion, the present study suggested that luteolin may act as a potential therapeutic reagent for treating septic diseases.  相似文献   

10.
High‐mobility group box 1 (HMGB1) shows pro‐inflammatory activity in various inflammatory diseases and has been found up‐regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)‐induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS‐exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)‐treated lung macrophages (MH‐S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS‐exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti‐HMGB1 polyclonal antibody (anti‐HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B‐II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF‐κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B‐II but not Beclin1 in CSE or rHMGB1‐treated MH‐S cells, and inhibition of autophagy by CQ and 3‐methyladenine (3‐MA) abrogated the migration and p65 phosphorylation of CSE‐treated cells. These results indicate that CS‐induced HMGB1 translocation and release contribute to migration and NF‐κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.  相似文献   

11.
Inflammatory responses, characterized by the overproduction of numerous proinflammatory mediators by immune cells, is essential to protect the host against invading pathogens. Excessive production of proinflammatory cytokines is a key pathogenic factor accounting for severe tissue injury and disease progression during the infection of multiple viruses, which are therefore termed as “cytokine storm”. High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein released either over virus-infected cells or activated immune cells, may act as a proinflammatory cytokine with a robust capacity to potentiate inflammatory response and disease severity. Moreover, HMGB1 is a host factor that potentially participates in the regulation of viral replication cycles with complicated mechanisms. Currently, HMGB1 is regarded as a promising therapeutic target against virus infection. Here, we provide an overview of the updated studies on how HMGB1 is differentially manipulated by distinct viruses to regulate viral diseases.  相似文献   

12.
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.  相似文献   

13.
14.
High-mobility group box 1 (HMGB1) protein is a highly abundant protein that can promote the pathogenesis of inflammatory and autoimmune diseases once it is in an extracellular location. This translocation can occur with immune cell activation as well as cell death, with the conditions for release associated with the expression of different isoforms. These isoforms result from post-translational modifications, with the redox states of three cysteines at positions 23, 45 and 106 critical for activity. Depending on the redox states of these residues, HMGB1 can induce cytokine production via toll-like receptor 4 (TLR4) or promote chemotaxis by binding the chemokine CXCL12 for stimulation via CXCR4. Fully oxidized HMGB1 is inactive. During the course of inflammatory disease, HMGB1 can therefore play a dynamic role depending on its redox state. As a mechanism to generate alarmins, cell death is an important source of HMGB1, although each major cell death form (necrosis, apoptosis, pyroptosis and NETosis) can lead to different isoforms of HMGB1 and variable levels of association of HMGB1 with nucleosomes. The association of HMGB1 with nucleosomes may contribute to the pathogenesis of systemic lupus erythematosus by producing nuclear material whose immunological properties are enhanced by the presence of an alarmin. Since HMGB1 levels in blood or tissue are elevated in many inflammatory and autoimmune diseases, this molecule can serve as a unique biomarker as well as represent a target of novel therapies to block its various activities.  相似文献   

15.
16.
Jung JH  Park JH  Jee MH  Keum SJ  Cho MS  Yoon SK  Jang SK 《Journal of virology》2011,85(18):9359-9368
High-mobility group box 1 (HMGB1), an abundant nuclear protein that triggers host immune responses, is an endogenous danger signal involved in the pathogenesis of various infectious agents. However, its role in hepatitis C virus (HCV) infection is not known. Here, we show that HMGB1 protein is translocated from the nucleus to cytoplasm and subsequently is released into the extracellular milieu by HCV infection. Secreted HMGB1 triggers antiviral responses and blocks HCV infection, a mechanism that may limit HCV propagation in HCV patients. Secreted HMGB1 also may have a role in liver cirrhosis, which is a common comorbidity in HCV patients. Further investigations into the roles of HMGB1 in the diseases caused by HCV infection will shed light on and potentially help prevent these serious and prevalent HCV-related diseases.  相似文献   

17.
HMGB1: endogenous danger signaling   总被引:12,自引:0,他引:12  
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.  相似文献   

18.
19.
High mobility group box 1 (HMGB1) is widely expressed in cells of vertebrates in two forms: a nuclear "architectural" factor and a secreted inflammatory factor. During early brain development, HMGB1 displays a complex temporal and spatial distribution pattern in the central nervous system. It facilitates neurite outgrowth and cell migration critical for processes, such as forebrain development. During adulthood, HMGB1 serves to induce neuroinflammation after injury, such as lesions in the spinal cord and brain. Receptor for advanced glycation end products and Toll-like receptors signal transduction pathways mediate HMGB1-induced neuroinflammation and necrosis. Increased levels of endogenous HMGB1 have also been detected in neurodegenerative diseases. However, in Huntington's disease, HMGB1 has been reported to protect neurons through activation of apurinic/apyrimidinic endonuclease and 5'-flap endonuclease-1, whereas in other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, HMGB1 serves as a risk factor for memory impairment, chronic neurodegeneration, and progression of neuroinflammation. Thus, HMGB1 plays important and double-edged roles during neural development and neurodegeneration. The HMGB1-mediated pathological mechanisms have remained largely elusive. Knowledge of these mechanisms is likely to lead to therapeutic targets for neurological diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号