首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early stages of diabetic retinopathy (DR) are characterized by alterations similar to neurodegenerative and inflammatory conditions such as increased neural apoptosis, microglial cell activation and amplified production of pro-inflammatory cytokines. Adenosine regulates several physiological functions by stimulating four subtypes of receptors, A1AR, A2AAR, A2BAR, and A3AR. Although the adenosinergic signaling system is affected by diabetes in several tissues, it is unknown whether diabetic conditions in the retina can also affect it. Adenosine delivers potent suppressive effects on virtually all cells of the immune system, but its potential role in the context of DR has yet to be studied in full. In this study, we used primary mixed cultures of rat retinal cells exposed to high glucose conditions, to mimic hyperglycemia, and a streptozotocin rat model of type 1 diabetes to determine the effect diabetes/hyperglycemia have on the expression and protein levels of adenosine receptors and of the enzymes adenosine deaminase and adenosine kinase. We found elevated mRNA and protein levels of A1AR and A2AAR, in retinal cell cultures under high glucose conditions and a transient increase in the levels of the same receptors in diabetic retinas. Adenosine deaminase and adenosine kinase expression and protein levels showed a significant decrease in diabetic retinas 30 days after diabetes induction. An enzymatic assay performed in retinal cell cultures revealed a marked decrease in the activity of adenosine deaminase under high glucose conditions. We also found an increase in extracellular adenosine levels accompanied by a decrease in intracellular levels when retinal cells were subjected to high glucose conditions. In conclusion, this study shows that several components of the retinal adenosinergic system are affected by diabetes and high glucose conditions, and the modulation observed may uncover a possible mechanism for the alleviation of the inflammatory and excitotoxic conditions observed in diabetic retinas.  相似文献   

2.
Hyperglycemia increases mitochondrial superoxide in retina and retinal cells   总被引:26,自引:0,他引:26  
Oxidative stress is believed to play a significant role in the development of diabetic retinopathy. In this study, we have investigated the effects of elevated glucose concentration on the production of superoxide anion by retina and retinal cells, the cellular source of the superoxide, the effect of therapies that are known to inhibit diabetic retinopathy on the superoxide production, and the role of the superoxide in cell death in elevated glucose concentration. Superoxide release was measured from retinas collected from streptozotocin-diabetic rats (2 months) treated with or without aminoguanidine, aspirin, or vitamin E, and from transformed retinal Müller cells (rMC-1) and bovine retinal endothelial cells (BREC) incubated in normal (5 mM) and high (25 mM) glucose. Diabetes (retina) or incubation in elevated glucose concentration (rMC-1 and BREC cells) significantly increased superoxide production, primarily from mitochondria, because an inhibitor of mitochondrial electron transport chain complex II normalized superoxide production. Inhibition of reduced nicotinamine adenine dinucleotide phosphate (NADPH) oxidase or nitric oxide synthase had little or no effect on the glucose-induced increase in superoxide. Treatment of diabetic animals with aminoguanidine, aspirin, or vitamin E for 2 months significantly inhibited the diabetes-induced increase in production of superoxide in the retinas. Despite the increased production of superoxide, no increase in protein carbonyls was detected in retinal proteins from animals diabetic for 2-6 months or rMC-1 cells incubated in 25 mM glucose for 5 d unless the activities of calpain or the proteosome were inhibited. Addition of copper/zinc-containing superoxide dismutase to the media of rMC-1 and BREC cells inhibited the apoptotic death caused by elevated glucose. Diabetes-like glucose concentration increases superoxide production in retinal cells, and the superoxide contributes to impaired viability and increased cell death under those circumstances. Three therapies that inhibit the development of diabetic retinopathy all inhibit superoxide production, raising a possibility that these therapies inhibit retinopathy in part by inhibiting a hyperglycemia-induced increase in superoxide production.  相似文献   

3.
High blood glucose results in high glucose levels in retina, because GLUT1, the sole glucose transporter between blood and retina, transports more glucose when blood glucose is high. This is the ultimate cause of diabetic retinopathy. Knockdown of GLUT1 by intraocular injections of a pool of siRNAs directed against SLC2A1 mRNA which codes for GLUT1 significantly reduced mean retinal glucose levels in diabetic mice. Systemic treatment of diabetic mice with forskolin or genistein, which bind GLUT1 and inhibit glucose transport, significantly reduced retinal glucose to the same levels seen in non‐diabetics. 1,9‐Dideoxyforskolin, which binds GLUT1 but does not stimulate adenylate cyclase had an equivalent effect to that of forskolin regarding lowering retinal glucose in diabetics indicating that cyclic AMP is noncontributory. GLUT1 inhibitors also reduced glucose and glycohemoglobin levels in red blood cells providing a peripheral biomarker for the effect. In contrast, brain glucose levels were not increased in diabetics and not reduced by forskolin. Treatment of diabetics with forskolin prevented early biomarkers of diabetic retinopathy, including elevation of superoxide radicals, increased expression of the chaperone protein β2 crystallin, and increased expression of vascular endothelial growth factor (VEGF). These data identify GLUT1 as a promising therapeutic target for prevention of diabetic retinopathy. J. Cell. Physiol. 228: 251–257, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Vascular endothelial cell growth factor (VEGF) is an endothelial cell-specific angiogenic and permeability-inducing factor that has been implicated in the pathogenesis of diabetic retinopathy. The objectives of this study are to compare VEGF and VEGF receptor expression between retinal and brain-derived endothelial cells cultured in 5 or 30 mM glucose for 5 days. Our results show that expression of cell-surface VEGF receptors, assessed by flow cytometry, is higher in retinal-derived endothelial cells. RT-PCR results show that both retinal and brain-derived endothelial cells express comparable levels and types of VEGF. Exposure to 30 mM glucose for 5 days did not alter levels of VEGF or VEGF receptors. The higher level of VEGF receptor expression in retinal endothelial cells suggests that the retinal microcirculation may be more sensitive to the effects of VEGF and this may contribute to the pathogenesis of diabetic retinopathy.  相似文献   

5.
Hyperglycemia impairs glucagon‐like peptide‐1 receptor (GLP‐1R) signaling in multiple cell types and thereby potentially attenuates the therapeutic effects of GLP‐1R agonists. We hypothesized that the downregulation of GLP‐1R by hyperglycemia might reduce the renal‐protective effects of GLP‐1R agonists in diabetic nephropathy (DN). In this study, we examined the effects of high glucose on the expression of GLP‐1R and its signaling pathways in the HBZY‐1 rat mesangial cell line. We found that high glucose reduced GLP‐1R messenger RNA (mRNA) levels in HBZY‐1 cells and in the renal cortex in db/db mice comparing with control groups. In consistence, GLP‐1R agonist exendin‐4 induced CREB phosphorylation was attenuated by high glucose but not low glucose treatment, which is paralleled with abrogated anti‐inflammatory functions in HBZY‐1 cells linked with nuclear factor‐κB (NF‐κB) activation. In consistence, GLP‐1R inhibition aggravated the high glucose‐induced activation of NF‐κB and MCP‐1 protein levels in cultured HBZY‐1 cells while overexpression of GLP‐1R opposite effects. We further proved that metformin restored high glucose‐inhibited GLP‐1R mRNA expression and decreased high glucose evoked inflammation in HBZY‐1 cells. On the basis of these findings, we conclude that high glucose lowers GLP‐1R expression and leads to inflammatory responses in mesangial cells, which can be reversed by metformin. These data support the rationale of combinative therapy of metformin with GLP‐1R agonists in DN.  相似文献   

6.
Angiogenesis is involved in many pathological states such as progression of tumours, retinopathy of prematurity and diabetic retinopathy. The latter is a more complex diabetic complication in which neurodegeneration plays a significant role and a leading cause of blindness. The vascular endothelial growth factor (VEGF) is a powerful pro‐angiogenic factor that acts through three tyrosine kinase receptors (VEGFR‐1, VEGFR‐2 and VEGFR‐3). In this work we studied the anti‐angiogenic effect of quercetin (Q) and some of its derivates in human microvascular endothelial cells, as a blood retinal barrier model, after stimulation with VEGF‐A. We found that a permethylated form of Q, namely 8MQPM, more than the simple Q, is a potent inhibitor of angiogenesis both in vitro and ex vivo. Our results showed that these compounds inhibited cell viability and migration and disrupted the formation of microvessels in rabbit aortic ring. The addition of Q and more significantly 8MQPM caused recoveries or completely re‐establish the transendothelial electrical resistance (TEER) to the control values and suppressed the activation of VEGFR2 downstream signalling molecules such as AKT, extracellular signal‐regulated kinase, and c‐Jun N‐terminal kinase. Taken together, these data suggest that 8MQPM might have an important role in the contrast of angiogenesis‐related diseases.  相似文献   

7.
A nonselective inhibitor of cyclooxygenase (COX; high-dose aspirin) and a relatively selective inhibitor of inducible nitric oxide synthase (iNOS; aminoguanidine) have been found to inhibit development of diabetic retinopathy in animals, raising a possibility that NOS and COX play important roles in the development of retinopathy. In this study, the effects of hyperglycemia on retinal nitric oxide (NO) production and the COX-2 pathway, and the interrelationship of the NOS and COX-2 pathways in retina and retinal cells, were investigated using a general inhibitor of NOS [N(G)-nitro-l-arginine methyl ester (l-NAME)], specific inhibitors of iNOS [l-N(6)-(1-iminoethyl)lysine (l-NIL)] and COX-2 (NS-398), and aspirin and aminoguanidine. In vitro studies used a transformed retinal Müller (glial) cell line (rMC-1) and primary bovine retinal endothelial cells (BREC) incubated in 5 and 25 mM glucose with and without these inhibitors, and in vivo studies utilized retinas from experimentally diabetic rats (2 mo) treated or without aminoguanidine or aspirin. Retinal rMC-1 cells cultured in high glucose increased production of NO and prostaglandin E(2) (PGE(2)) and expression of iNOS and COX-2. Inhibition of NO production with l-NAME or l-NIL inhibited all of these abnormalities, as did aminoguanidine and aspirin. In contrast, inhibition of COX-2 with NS-398 blocked PGE(2) production but had no effect on NO or iNOS. In BREC, elevated glucose increased NO and PGE(2) significantly, whereas expression of iNOS and COX-2 was unchanged. Viability of rMC-1 cells or BREC in 25 mM glucose was significantly less than at 5 mM glucose, and this cell death was inhibited by l-NAME or NS-398 in both cell types and also by l-NIL in rMC-1 cells. Retinal homogenates from diabetic animals produced significantly greater than normal amounts of NO and PGE(2) and of iNOS and COX-2. Oral aminoguanidine and aspirin significantly inhibited all of these increases. The in vitro results suggest that the hyperglycemia-induced increase in NO in retinal Müller cells and endothelial cells increases production of cytotoxic prostaglandins via COX-2. iNOS seems to account for the increased production of NO in Müller cells but not in endothelial cells. We postulate that NOS and COX-2 act together to contribute to retinal cell death in diabetes and to the development of diabetic retinopathy and that inhibition of retinopathy by aminoguanidine or aspirin is due at least in part to inhibition of this NO/COX-2 axis.  相似文献   

8.
Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF) that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.  相似文献   

9.
Hyperglycemia affects retinal vascular cell function, promotes the development and progression of diabetic retinopathy and ultimately causes vision loss. Oxidative stress, reactive oxygen species (ROS) in excess, is a key biomarker for diabetic retinopathy. Using time‐lapse fluorescence microscopy, ROS dynamics was monitored and the metabolic resistivity of retinal endothelial cells (REC) and pericytes (RPC) was compared under metabolic stress conditions including high glucose (HG). In the presence of a mitochondrial stressor, REC exhibited a significant increase in the rate of ROS production compared with RPC. Thus, under normal glucose (NG), REC may utilize oxidative metabolism as the bioenergetic source, while RPC metabolic activity is independent of mitochondrial respiration. In HG condition, the rate of ROS production in RPC was significantly higher, whereas this rate remained unchanged in REC. Thus, under HG condition RPC may preferentially utilize oxidative metabolism, which results in increased rate of ROS production. In contrast, REC use glycolysis as their major bioenergetic source for ATP production, and consequently HG minimally affects their ROS levels. These observations are consistent with our previous studies where we showed HG condition has minimal effect on apoptosis of REC, but results in increased rate of apoptosis in RPC. Collectively, our results suggest that REC and RPC exhibit different metabolic activity preferences under different glucose conditions. Thus, protection of RPC from oxidative stress may provide an early point of intervention in development and progression of diabetic retinopathy.   相似文献   

10.
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1?/? mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl2) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.  相似文献   

11.
Diabetic retinopathy results from altered insulin receptor signaling. Based on previous studies demonstrating an interaction between β-adrenergic receptors and insulin signaling in hyperglycemic conditions, we hypothesized that β-adrenergic receptor stimulation and insulin stimulation would act synergistically to inhibit one of the hallmarks of diabetic retinopathy, namely retinal endothelial cell apoptosis. To test this hypothesis, human retinal endothelial cells were grown in high glucose (25 mM) medium and treated with a β-1-adrenergic receptor agonist (xamoterol, 10 μM) alone, insulin alone (10 nM) or xamoterol + insulin. We then assessed changes in the levels of insulin receptor, insulin-like growth factor (IGF-1) receptor, and Akt phosphorylation, as well as cleaved caspase 3. Xamoterol alone significantly decreased insulin receptor, IGF-1 receptor and Akt phosphorylation, whereas insulin alone increased insulin receptor, IGF-1 receptor, and Akt phosphorylation. Xamoterol significantly decreased apoptosis of retinal endothelial cells. This data suggests that both β-adrenergic receptors and insulin can inhibit retinal endothelial cell apoptosis in hyperglycemic conditions, but inhibition occurs through independent pathways. These findings have implications for treatments of diabetic retinopathy.  相似文献   

12.
Retinal pigment epithelial cells are closely associated with the pathogenesis of diabetic retinopathy. The mechanism by which diabetes impacts retinal pigment epithelial cell function is of significant interest. Sirtuins are an important class of proteins that primarily possess nicotinamide adenine dinucleotide-dependent deacetylases activity and involved in various cellular physiological and pathological processes. Here, we aimed to examine the role of sirtuins in the induction of diabetes-associated retinal pigment epithelial cell dysfunction. High glucose and platelet-derived growth factor (PDGF) treatment induced epithelial–mesenchymal transition and the migration of retinal pigment epithelial cells, and decreased sirtuin-3 expression. Sirtuin-3 knockdown using siRNA increased epithelial–mesenchymal transition and migration of retinal pigment epithelial cells. In contrast, sirtuin-3 overexpression attenuated the effects caused by high glucose and PDGF on epithelial–mesenchymal transition and migration of retinal pigment epithelial cells, suggesting that sirtuin-3 deficiency contributed to retinal pigment epithelial cell dysfunction induced by high glucose and PDGF. Mechanistically, sirtuin-3 deficiency induced retinal pigment epithelial cell dysfunction by the overproduction of mitochondrial reactive oxygen species. These results suggest that sirtuin-3 deficiency mediates the migration of retinal pigment epithelial cells, at least partially by increasing mitochondrial oxidative stress, and shed light on the importance of sirtuin-3 and mitochondrial reactive oxygen species as potential targets in diabetic retinopathy therapy.  相似文献   

13.
Hyperglycemia is considered as one of the major determinants in the development of diabetic retinopathy, but the progression of retinopathy resists arrest after hyperglycemia is terminated, suggesting a metabolic memory phenomenon. Diabetes alters the expression of retinal genes, and this continues even after good glycemic control is re‐instituted. Since the expression of genes is affected by chromatin structure that is modulated by post‐translational modifications of histones, our objective is to investigate the role of histone acetylation in the development of diabetic retinopathy, and in the metabolic memory phenomenon. Streptozotocin‐induced rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by in GC for 6 months (PC‐GC). On a cellular level, retinal endothelial cells, the target of histopathology of diabetic retinopathy, were incubated in 5 or 20 mM glucose for 4 days. Activities of histone deacetylase (HDAC) and histone acetyltransferase (HAT), and histone acetylation were quantified. Hyperglycemia activated HDAC and increased HDAC1, 2, and 8 gene expressions in the retina and its capillary cells. The activity HAT was compromised and the acetylation of histone H3 was decreased. Termination of hyperglycemia failed to provide any benefits to diabetes‐induced changes in retinal HDAC and HAT, and histone H3 remained subnormal. This suggests “in principle” the role of global acetylation of retinal histone H3 in the development of diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. J. Cell. Biochem. 110: 1306–1313, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors. These results identify a primary mechanism underlying the serotonergic regulation of energy balance and provide an example of a centrally derived signal that reciprocally regulates melanocortin receptor agonists and antagonists in a similar manner to peripheral adiposity signals.  相似文献   

15.
In this study, we characterized the functional role of long noncoding RNA (lncRNA), brain derived neurotrophic factor anti‐sense (BDNF‐AS) in regulating D‐glucose‐induced (DGI) apoptosis in human retinal pigment epithelial (RPE) cells. Human RPE cell line, ARPE‐19 cells were cultured in vitro and treated with various concentrations of D‐glucose for 24 h. A TUNEL assay was applied with immunohistochemical and quantitative approaches to assess the apoptotic effect of D‐glucose. Under the condition of 50 mM D‐glucose, qPCR was used to assess gene expression of BDNF and BDNF‐AS in ARPE‐19 cells. Using siRNA transfection, BDNF‐AS was endogenously knocked down in ARPE‐19 cells. The effects of BDNF‐AS downregulation on DGI apoptosis and BDNF expression were assessed by TUNEL assay, qPCR, and Western blot, respectively. Furthermore, in BDNF‐AS‐downregulated ARPE‐19 cells, secondary siRNA transfection was conducted to knock down endogenous BDNF expression. Its effect on BDNF‐AS‐associated apoptotic regulation was further evaluated. High concentrations of D‐glucose induced significant apoptosis in ARPE‐19 cells in vitro. With treatment of 50 mM D‐glucose, BDNF was markedly downregulated whereas BDNF‐AS upregulated in ARPE‐19 cells. SiRNA‐mediated BDNF‐AS downregulation ameliorated DGI apoptosis and upregulated BDNF in ARPE‐19 cells. In addition, inhibiting BDNF reversed the protective effect of BDNF‐AS downregulation on DGI apoptosis. Our results suggest that BDNF‐AS, through inverse regulation of BDNF, might play a critical role in the process of DGI apoptosis in diabetic retinopathy.  相似文献   

16.
17.
Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up‐regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)‐induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG‐induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short‐hairpin RNA significantly decreased HG‐induced cell apoptosis by reducing caspase‐3 activation and ratio of Bcl2‐associated X protein to B‐cell lymphoma/leukemia‐2 (bax/bcl‐2). Furthermore, HG activated E26 transformation‐specific sequence‐1 (Ets‐1), and HMGB1 inhibition attenuated HG‐induced activation of Ets‐1 via extracellular signal‐regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets‐1 significantly decreased HG‐induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin‐treated diabetic mice. Inhibition of HMGB1 by short‐hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets‐1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia‐induced cardiomyocyte apoptosis by down‐regulating ERK‐dependent activation of Ets‐1.  相似文献   

18.
Aminoguanidine inhibits the development of retinopathy in diabetic animals, but the mechanism remains unclear. Inasmuch as aminoguanidine is a relatively selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), we have investigated the effects of hyperglycemia on the retinal nitric oxide (NO) pathway in the presence and absence of aminoguanidine. In vivo studies utilized retinas from experimentally diabetic rats treated or without aminoguanidine for 2 months, and in vitro studies used bovine retinal endothelial cells and a transformed retinal glial cell line (rMC-1) incubated in 5 mm and 25 mm glucose with and without aminoguanidine (100 microg/mL). NO was detected as nitrite and nitrate, and nitrotyrosine and iNOS were detected using immunochemical methods. Retinal homogenates from diabetic animals had greater than normal levels of NO and iNOS (p < 0.05), and nitrotyrosine was greater than normal, especially in one band immunoprecipitated from retinal homogenates. Oral aminoguanidine significantly inhibited all of these increases. Nitrotyrosine was detected immunohistochemically only in the retinal vasculature of non-diabetic and diabetic animals. Retinal endothelial and rMC-1 cells cultured in high glucose increased NO and NT, and aminoguanidine inhibited both increases in rMC-1 cells, but only NT in endothelial cells. Hyperglycemia increases NO production in retinal cells, and aminoguanidine can inhibit this abnormality. Inhibition of diabetic retinopathy by aminoguanidine might be mediated in part by inhibition of sequelae of NO production.  相似文献   

19.
Hyperglycemia impacts retinal vascular function and promotes the development and progression of diabetic retinopathy, which ultimately results in growth of new blood vessels and loss of vision. How high glucose affects retinal endothelial cell (EC) properties requires further investigation. Here we determined the impact of high glucose on mouse retinal EC function in vitro. High glucose significantly enhanced the migration of retinal EC without impacting their proliferation, apoptosis, adhesion, and capillary morphogenesis. The enhanced migration of retinal EC under high glucose was reversed in the presence of the antioxidant N-acetylcysteine, suggesting increased oxidative stress under high-glucose conditions. Retinal EC under high-glucose conditions also expressed increased levels of fibronectin, osteopontin, and alpha(v)beta(3)-integrin, and reduced levels of thrombospondin-1. These changes were concomitant with sustained activation of the downstream prosurvival and promigratory signaling pathways, including Src kinase, phosphatidylinositol 3-kinase/Akt1/endothelial nitric oxide synthase, and ERKs. The sustained activation of these signaling pathways was essential for enhanced migration of retinal EC under high-glucose conditions. Together, our results indicate the exposure of retinal EC to high glucose promotes a promigratory phenotype. Thus alterations in the proangiogenic properties of retinal EC during diabetes may contribute to the development and pathogenesis of diabetic retinopathy.  相似文献   

20.
Diabetes induced a serious of complications including diabetic retinopathy. Our study aimed to investigate the role of Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in diabetic retinopathy. A mice model of diabetic retinopathy was established, and expression of SDF-1 and CXCR4 in retina was examined by Real-time quantitative PCR (qRT-PCR). Cells of human retinal pigment epithelial cell line ARPE-19 were treated with CXCR4 siRNAs and expression vector, and cell viability was detected by MTT assay. We found that expression of SDF-1 and CXCR4 in retina was significantly downregulated in mice with diabetic retinopathy than in normal healthy mice. High glucose treatment downregulated the expression of SDF-1 and CXCR4 in ARPE-19 cells at both mRNA and protein levels. Transfection with CXCR4 siRNAs decreased, while transfection with CXCR4 expression vector increased cell viability under high glucose treatment. We concluded that SDF-1/CXCR4 pathway improved diabetic retinopathy possibly by increasing cell viability.

Abbreviations: SDF-1: Stromal cell-derived factor 1; CXCL12: C-X-C motif chemokine 12; qRT-PCR: Real-time quantitative PCR  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号