首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to explore the role of sulfasalazine on proliferation and metastasis in gastric cancer by inhibition of xCT. The relationships between clinical characteristics and xCT expression were analysed. An immunohistochemical staining assay and Western blot were performed among gastric cancers and normal gastric tissues. qPCR and Western blot were also used to evaluate the mRNA and protein expression in the normal gastric cell and eight gastric cancer cells, respectively. CCK-8 and colony formation assays were used to evaluate the effect of sulfasalazine on the proliferation and colony formation ability of three gastric cancers. The effect of sulfasalazine on the migration and invasion abilities of three cancer cells was assessed by the Transwell assay. xCT protein is up-regulated in gastric cancer specimens and cells. Three gastric cancer cells with high, medium and low expression of xCT were selected for the following analyses. CCK-8 assays revealed that sulfasalazine could attenuate the proliferation of HGC-27 and AGS. Also, the colony formation assay revealed that sulfasalazine might attenuate the colony formation ability in HGC-27 and AGS cells. Plus, the Transwell assays demonstrated that sulfasalazine might attenuate the migration and invasion abilities in HGC-27 and AGS cells. In conclusion, higher expression of xCT is associated with advanced tumour stage and poor overall survival of gastric cancer. Sulfasalazine can attenuate the proliferation, colony formation, metastasis and invasion of gastric cancer in vitro. Further study is required to validate our findings.  相似文献   

2.
Kang W  Tong JH  Chan AW  Lung RW  Chau SL  Wong QW  Wong N  Yu J  Cheng AS  To KF 《PloS one》2012,7(3):e33919
Stathmin1 (STMN1) is a candidate oncoprotein and prognosis marker in several kinds of cancers. This study was aimed to analyze its expression and biological functions in gastric cancer. The expression of STMN1 was evaluated by qRT-PCR, western blot and immunohistochemistry. The biological function of STMN1 was determined by MTT proliferation assays, monolayer colony formation and cell invasion assays using small interference RNA technique in gastric cancer cell lines. We also explored the regulation of STMN1 expression by microRNA-223. STMN1 was upregulated in gastric cancer cell lines and primary gastric adenocarcinomas. STMN1-positive tumors were more likely to be found in old age group and associated with p53 nuclear expression. In diffuse type gastric adenocarcinomas, STMN1 expression was correlated with age (p = 0.043), T stage (p = 0.004) and lymph node metastasis (p = 0.046). Expression of STMN1 in diffuse type gastric adenocarcinoma was associated with poor disease specific survival by univariate analysis (p = 0.01). STMN1 knockdown in AGS and MKN7 cell lines suppressed proliferation (p<0.001), reduced monolayer colony formation (p<0.001), inhibited cell invasion and migration ability (p<0.001) and induced G1 phase arrest. siSTMN1 could also suppress cell growth in vivo (p<0. 01). We finally confirmed that STMN1 is a putative downstream target of miR-223 in gastric cancer. Our findings supported an oncogenic role of STMN1 in gastric cancer. STMN1 might serve as a prognostic marker and a potential therapeutic target for gastric cancer.  相似文献   

3.
The purpose of the article is to investigate the role of IARS2 in proliferation, apoptosis, and cell cycle of gastric cancer (GC) cells in vitro. The IARS2-shRNA lentiviral vector was established and used to infect the GC cell line AGS. qRT-PCR and Western blot were employed to determine the efficiency of IARS2 knockdown. The effects of IARS2 knockdown on cell proliferation, cell clone formation, and cell cycle were assessed by MTT assay, colony formation assay, and flow cytometer analysis, respectively. Finally, a PathScan Antibody Array Kit was used to detect the expression levels of cell cycle-related proteins after IARS2 knockdown in AGS cells to elucidate the underlying mechanisms. Compared with negative control group, IARS2 was significantly knocked down by transfection with lentivirus encoding shRNA of IARS2 in AGS cells. IARS2 knockdown significantly inhibited the proliferation and colony formation ability and induced cycle arrest at G2/M phase of AGS cells. IARS2 knockdown significantly decreased the expression levels of phosphorylation of (p-Smad2), p-SAPK/JUK, cleavage-Caspase-7, and p-TAK1, but increased the expression levels of p-53 and cleavage-PARP in AGS cells compared to shCtrl group. We demonstrated that IARS2 knockdown inhibits proliferation, suppresses colony formation, and causes cell cycle arrest in AGS cells. We also found that IARS2 regulates key molecules of cell apoptosis-related signaling pathway.  相似文献   

4.
A‐kinase‐interacting protein 1 (AKIP1) has previously been reported to act as a potential oncogenic protein in various cancers. The clinical significance and biological role of AKIP1 in gastric cancer (GC) is, however, still elusive. Herein, this study aimed to investigate the functional and molecular mechanism by which AKIP1 influences GC. AKIP1 mRNA and protein expressions in GC tissues were examined by quantitative real‐time PCR (qRT‐PCR), Western blot and immunohistochemistry. Other methods including stably transfected against AKIP1 into gastric cancer cells, wound healing, transwell assays, CCK‐8, colony formation, qRT‐PCR and Western blot in vitro and tumorigenesis in vivo were also performed. The up‐regulated expression of AKIP1 in GC specimens significantly correlated with clinical metastasis and poor prognosis in patients with GC. AKIP1 knockdown markedly suppressed GC cells proliferation, invasion and metastasis both in vitro and in vivo. In contrast, AKIP1 overexpression resulted in the opposite effects. Moreover, mechanistic analyses indicated that Slug‐induced epithelial‐mesenchymal transition (EMT) might be responsible for AKIP1‐influenced GC cells behaviour. Our findings demonstrated that high AKIP1 expression significantly correlated with clinical metastasis and unfavourable prognosis in patients with GC. Additionally, AKIP1 promoted GC cells proliferation, migration and invasion by activating Slug‐induced EMT.  相似文献   

5.
REIC is downregulated in immortalized cell lines compared with the parental normal counterparts. It may inhibit colony formation, tumor growth and induce apoptosis. Here, gastric carcinoma or epithelial cells transfected with REIC-expressing plasmid, its siRNA or treated with recombinant REIC were subjected to the phenotypes’ measurement or related molecules’ detection. REIC expression was examined in gastric carcinomas by RT-PCR, western blot and immunohistochemistry. REIC overexpression or treatment resulted in a low karyoplasmic ratio and proliferation, G1 arrest, high apoptosis, low migration, invasion or lamellipodia formation in AGS cells. REIC knockdown caused the opposite in GES-1 cells. Anti-REIC antibody blocked the effects of REIC overexpression on proliferation, G1/S progression and apoptosis. Ectopic REIC expression downregulated the expression of β-catenin, phosphorylated S6K (Thr389), phosphorylated Akt1/2/3 (Ser473), cyclin D2 and E, WAVE2 and upregulated phosphorylated mTOR (Ser2448) expression and the mRNA level of Akt1, Akt2, mTOR, Raptor and Rictor in AGS cells. REIC expression was negatively associated with tumor size, lymph node metastasis, dedifferentiation or poor prognosis of carcinoma. The serum REIC level was significantly higher in healthy individuals than the carcinoma patients and inversely linked to tumor size by ELISA. The possible mechanisms underlying the forced REIC overexpression or recombinant REIC mediated the reversal of the aggressive phenotypes of gastric carcinoma cells are to downregulate β-catenin and WAVE2 expression and to alter other related target proteins. Downregulated REIC expression was closely linked to aggressive behaviors and poor prognosis of gastric carcinoma.  相似文献   

6.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

7.
8.
Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.  相似文献   

9.
Pancreatic cancer (PC) remains a primary cause of cancer‐related deaths worldwide. Existing literature has highlighted the oncogenic role of microRNA‐27a (miR‐27a) in multiple cancers. Hence, the current study aimed to clarify the potential therapeutic role of PC cell–derived exosomal miR‐27a in human microvascular endothelial cell (HMVEC) angiogenesis in PC. Initially, differentially expressed genes (DEGs) and miRs related to PC were identified by microarray analysis. Microarray analysis provided data predicting the interaction between miR‐27a and BTG2 in PC, which was further verified by the elevation or depletion of miR‐27a. Next, the expression of miR‐27a and BTG2 in the PC tissues was quantified. HMVECs were exposed to exosomes derived from PC cell line PANC‐1 to investigate the effects associated with PC cell–derived exosomes carrying miR‐27a on HMVEC proliferation, invasion and angiogenesis. Finally, the effect of miR‐27a on tumorigenesis and microvessel density (MVD) was analysed after xenograft tumour inoculation in nude mice. Our results revealed that miR‐27a was highly expressed, while BTG2 was poorly expressed in both PC tissues and cell lines. miR‐27a targeted BTG2. Moreover, miR‐27a silencing inhibited PC cell proliferation and invasion, and promoted apoptosis through the elevation of BTG2. The in vitro assays revealed that PC cell–derived exosomes carrying miR‐27a stimulated HMVEC proliferation, invasion and angiogenesis, while this effect was reversed in the HMVECs cultured with medium containing GW4869‐treated PANC‐1 cells. Furthermore, in vivo experiment revealed that miR‐27a knockdown suppressed tumorigenesis and MVD. Taken together, cell‐derived exosomes carrying miR‐27a promotes HMVEC angiogenesis via BTG2 in PC.  相似文献   

10.
11.
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) regulate gene expression or activities. This study investigated the role of lncRNA LINC00551 in ESCC development and progression. Three paired ESCC and normal tissues were subjected to next‐generation sequencing and we identified 82 upregulated and 60 downregulated lncRNAs, including LINC00551, which was confirmed to markedly downregulated in 78 ESCC tissues and in the Gene Expression Profiling Interactive Analysis data set. Downregulated LINC00551 expression was associated with lymph node metastasis, advanced TNM stage, and tumor size. Moreover, downregulated LINC00551 expression was also associated with poor progression‐free survival and overall survival of ESCC patients. In vitro and in vivo, LINC00551 overexpression inhibited ESCC cell proliferation and invasion, whereas knockdown of LINC00551 expression promoted ESCC cell proliferation and invasion. RNA pull‐down and mass spectrometry assays identified the potential LINC00551 binding proteins, and HSP27 was a promising LINC00551 targeting proteins after RNA immunoprecipitation assay. At the protein level, LINC00551 bound to and decreased HSP27 phosphorylation, and in turn, downregulated ESCC cell proliferation and invasion. The current study demonstrated the functional significance of LINC00551 in ESCC development, progression, and prognosis. Further study will assess LINC00551 as a novel prognostic marker or therapeutic target for ESCC.  相似文献   

12.
胃癌细胞分泌的胃泌素与胃癌的发生、发展密切相关.为了探讨胃泌素对胃癌细胞增殖、迁移和侵袭的影响,本文构建靶向胃泌素基因的siRNA表达载体, 转染胃癌细胞AGS, 成功获得沉默胃泌素基因的稳转胃癌细胞株AGS/Gas-siRNA. 用MTT实验、软琼脂集落形成实验、细胞伤愈实验、Transwell实验及ELISA检测沉默胃泌素基因后细胞的增殖、迁移、侵袭及转移相关蛋白基质金属蛋白酶-2(MMP-2)和血管内皮生长因子(VEGF)的含量. 结果显示: 与空载体转染的对照细胞比较, 沉默胃泌素基因的细胞, 其增殖率和克隆形成率显著降低,迁移和侵袭到Transwell下室的细胞数分别降低了31.6 %和34 %. 培养上清液中MMP-2和VEGF含量也低于对照细胞. 结果提示,沉默胃泌素基因的胃癌细胞,通过降低MMP 2和VEGF分泌,抑制了细胞的增殖、迁移和侵袭, 这可能是胃泌素促进胃癌侵袭转移的机制之一.  相似文献   

13.
14.
Gastric carcinoma (GC) is one of the most common malignancies and the third leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. In this study, we investigated the clinical significance and function of lncRNA SNHG1 in GC. SNHG1 was significantly downregulated in GC tumor tissues compared with adjacent noncancerous tissues. Overexpression of SNHG1 in BGC-823 cells remarkably inhibited not only cell proliferation, migration, invasion in vitro, but also tumorigenesis and lung metastasis in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Conversely, inhibition of SNHG1 by transfection of siRNA in AGS cells resulted in opposite phenotype changes. Mechanically, SNHG1 was found interacted with ILF3, NONO and SFPQ. RNA-seq combined with bioinformatic analysis identified a serial of downstream genes of SNHG1, including SOCS2, LOXL2, LTBP3, LTBP4. Overexpression of SNHG1 induced SOCS2 expression whereas knockdown of SNHG1 decreased SOCS2 expression. In addition, knockdown of SNHG1 promoted the activation of JAK2/STAT signaling pathway. Taken together, our data suggested that SNHG1 suppressed aggressive phenotype of GC cells and regulated SOCS2/JAK2/STAT pathway.  相似文献   

15.
Long non‐coding RNA (lncRNA) deleted in lymphocytic leukaemia 1 (DLEU1) was reported to be involved in the occurrence and development of multiple cancers. However, the exact expression, biological function and underlying mechanism of DLEU1 in hepatocellular carcinoma (HCC) remain unclear. In this study, real‐time quantitative polymerase chain reaction (qRT‐PCR) in HCC tissues and cell lines revealed that DLEU1 expression was up‐regulated, and the increased DLEU1 was closely associated with advanced tumour‐node‐metastasis stage, vascular metastasis and poor overall survival. Function experiments showed that knockdown of DLEU1 significantly inhibited HCC cell proliferation, colony formation, migration and invasion, and suppressed epithelial to mesenchymal transition (EMT) process via increasing the expression of E‐cadherin and decreasing the expression of N‐cadherin and Vimentin. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay demonstrated that DLEU1 could sponge miR‐133a. Moreover, miR‐133a inhibition significantly reversed the suppression effects of DLEU1 knockdown on HCC cells. Besides, we found that silenced DLEU1 significantly decreased insulin‐like growth factor 1 receptor (IGF‐1R) expression (a target of miR‐133a) and its downstream signal PI3K/AKT pathway in HCC cells, while miR‐133a inhibitor partially reversed this trend. Furthermore, DLEU1 knockdown impaired tumour growth in vivo by regulating miR‐133a/IGF‐1R axis. Collectively, these findings indicate that DLEU1 promoted HCC progression by sponging miR‐133a to regulate IGF‐1R expression. Deleted in lymphocytic leukaemia 1/miR‐133a/IGF‐1R axis may be a novel target for treatment of HCC.  相似文献   

16.
目的: 探讨胃癌组织硫氧还蛋白还原酶1(TrxR1)表达与生存时间的关系及其对胃癌细胞生长的影响。方法: 用Real-time PCR法检测76例胃癌组织及癌旁TrxR1 mRNA表达,并分析其与胃癌患者临床病理特征及预后的关系;随机选取3例胃癌组织及癌旁组织,采用免疫组化法、Western blot法检测TrxR1蛋白表达。采用Western blot法和Real-time PCR法检测胃癌细胞系及人胃粘膜上皮细胞中TrxR1的表达。采用小RNA干扰序列(siRNA)处理AGS细胞,根据处理方法不同将AGS细胞分为3组:阴性对照组:转染NC-siRNA、TRXR1 siRNA干扰1组:转染TRXR1-siRNA1、TRXR1 siRNA干扰2组:转染TRXR1-siRNA2。使用Real-time PCR法检测各组AGS细胞中TrxR1 mRNA的表达,克隆形成试验和MTT法检测AGS细胞生长情况。结果: 胃癌组织中TrxR1 mRNA和蛋白表达量均显著性上调,TrxR1主要定位于细胞质中。TrxR1高表达与患者TNM分期及淋巴结转移有关,且TrxR1高表达组患者的中位生存时间短于低表达组(P<0.05)。胃癌细胞中TrxR1表达量高于人胃粘膜上皮细胞系中的表达。TRXR1-siRNA1组AGS细胞和TRXR1-siRNA2组AGS细胞中TrxR1 mRNA和蛋白与NC-siRNA组相比均显著性降低(P<0.05),且AGS细胞克隆形成与增殖能力均降低(P<0.05)。结论: 胃癌组织中TrxR1高表达提示患者预后不良,沉默TrxR1能抑制胃癌细胞的增殖。  相似文献   

17.
A disintegrin and metalloproteinase 17 (ADAM17) is highly expressed in various tumours and affects tumour progression. In this study, ADAM17 expression in 60 gastric cancer and 20 normal gastric mucosal tissues was assessed using immunohistochemistry. ADAM17 expression was higher in gastric cancer tissues than in normal gastric mucosal tissues (P < 0.0005). A significant relationship was identified between ADAM17 expression and the depth of tumour invasion, metastasis, and carcinoma stage. Furthermore, the effects of ADAM17 knockdown on the proliferation, cell invasion, and apoptosis of human gastric carcinoma cells (SGC-7901) were determined. SGC-7901 cells were transfected with ADAM17-shRNA, and cell proliferation and migration were assessed using CCK-8 and transwell assays, respectively, to evaluate the role of ADAM17 in tumour proliferation and invasion. Furthermore, the EGFR signalling pathway, the cell membrane receptor-bound TNF-α level, and apoptosis were evaluated by western blotting and flow cytometry. The inhibition of cell proliferation and invasion was observed in the ADAM17 knockdown cells, which was associated with modulation of the EGFR signalling pathway. Apoptosis was increased, and TNF-α signalling was attenuated in the ADAM17 knockdown cells. Our study demonstrated that ADAM17 over-expression in gastric cancer tissues was closely associated with tumour proliferation, invasion, and apoptosis.  相似文献   

18.

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with high recurrence and metastasis rates. Radiotherapy represents a major therapeutic option for HCC patients. However, the efficacy of radiotherapy has been limited due to the development of intrinsic radioresistance of the tumor cells. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), one member of SUMO pseudogene family, is a novel identified lncRNA that was originally identified to be upregulated in gastric cancer. However, the detailed roles of SUMO1P3 in HCC development remain to be elucidated. Here, the expression of SUMO1P3 in HCC tissues and cells was examined by qRT-PCR. Cell proliferation, colony formation ability, invasion ability, apoptosis, and radiosensitivity were detected by MTT assay, colony formation assay, cell invasion assay, flow cytometry analysis, and survival fraction assay, respectively. We found that SUMO1P3 was significantly upregulated in HCC tissues and cells. Besides, SUMO1P3 was highly expressed in HCC patients with higher TNM stage. Furthermore, SUMO1P3 knockdown markedly suppressed cell proliferation, colony formation ability, and cell invasiveness, promoted apoptosis, and enhanced radiosensitivity of HCC cells. We concluded that the knockdown of SUMO1P3 repressed tumor growth, invasion, promoted apoptosis, and enhanced radiosensitivity in HCC, providing evidence that SUMO1P3 might be a potential novel biomarker and a therapeutic target for HCC.

  相似文献   

19.
20.
The long intergenic non‐protein coding RNA regulator of reprogramming (lncRNA‐ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up‐regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour‐node‐metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR‐206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR‐206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR‐206 and might be a potential therapeutic target for patients with OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号