首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

3.
Metastatic melanoma remains the deadliest of all skin cancers with a survival rate at five years of less than 15%. MT1‐MMP is a membrane‐associated matrix metalloproteinase that controls pericellular proteolysis and is an important, invasion‐promoting, pro‐tumorigenic MMP in cancer. We show that deregulation of MT1‐MMP expression happens as early as the transition from nevus to primary melanoma and continues to increase during melanoma progression. Furthermore, MT1‐MMP expression is associated with poor melanoma patient outcome, underscoring a pivotal role of MT1‐MMP in melanoma pathogenesis. We demonstrate that MT1‐MMP is directly required for melanoma cells to metastasize, as cells deprived of MT1‐MMP fail to form distant metastasis in an orthotopic mouse melanoma model. We show that MT1‐MMP affects cell invasion by activating its target MMP2. Importantly, we demonstrate, for the first time, that activation of MMP2 by MT1‐MMP is required to sustain RAC1 activity and promote MT1‐MMP‐dependent cell motility. These data highlight a novel MT1‐MMP/MMP2/RAC1 signaling axis in melanoma that may represent an intriguing molecular target for the treatment of invasive melanoma.  相似文献   

4.
Bladder cancer (BC) is the second most common urological tumour in Western countries. Approximately, 80% of patients with BC will present with non-muscle invasive bladder cancer (NMIBC), whereas a quarter will have muscle invasive disease (MIBC) at the time of BC diagnosis. However, patients with NMIBC are at risk of BC recurrence or progression into MIBC, and an MIBC prognosis is determined by the presence of progression and metastasis. Matrix metalloproteinase 2 (MMP2), a type of matrix metalloproteinase (MMP), plays a major role in tumour invasion and is well-characterized in BC prognosis. In BC, the mechanisms regulating MMP2 expression, and, in turn, promote cancer invasion, have hardly been explored. Thrombospondin-4 (THBS4/TSP4) is a matricellular glycoprotein that regulates multiple biological functions, including proliferation, angiogenesis, cell adhesion and extracellular matrix modelling. Based on the results of a meta-analysis in the Gene Expression Profiling Interactive Analysis 2 database, we observed that TSP4 expression levels were consistent with overall survival (OS) rate and BC progression, with the highest expression levels observed in the advanced stages of BC and associated with poor OS rate. In our pilot experiments, incubation with recombinant TSP4 promoted the migration and invasion in BC cells. Furthermore, MMP2 expression levels increased after recombinant TSP4 incubation. TSP4-induced-MMP2 expression and cell motility were regulated via the AKT signalling pathway. Our findings facilitate further investigation into TSP4 silencing-based therapeutic strategies for BC.  相似文献   

5.
c‐Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton‐mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c‐Cbl in glioma invasion has never been investigated. We report here, for the first time, that c‐Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi‐mediated depletion of c‐Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild‐type, but not mutant c‐Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c‐Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c‐Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c‐Cbl promotes glioma invasion through up‐regulation of MMP2. J. Cell. Biochem. 111: 1169–1178, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications.  相似文献   

7.
IGHMBP2(Immunoglobulin mu binding protein 2)基因编码一种解旋酶,参与DNA的复制和修复,并且作为转录调节因子在基因转录中发挥重要作用。IGHMBP2基因定位于11q13.2,该染色体区段在食管鳞癌中扩增频率较高。为了探讨IGHMBP2基因在食管鳞癌中的扩增情况及其在食管鳞癌中的作用,文章对本实验室前期报道的59例食管鳞癌原发肿瘤array-CGH数据进行分析,结果显示IGHMBP2基因扩增频率为28.9%(17/59)。进一步利用荧光原位杂交(FISH)和Western blot技术,发现食管鳞癌细胞系KYSE30、KYSE180、KYSE510和KYSE150中存在IGHMBP2基因扩增/增益以及蛋白高表达。敲降IGHMBP2后,KYSE30和KYSE150细胞的侵袭迁移能力明显降低(P<0.001),侵袭迁移相关蛋白E-cadherin的表达水平升高;敲降后转染IGHMBP2质粒,回复其蛋白表达后,细胞的侵袭迁移能力又得以恢复(P<0.01)。上述结果表明,IGHMBP2过表达可能通过降低E-cadherin的表达从而增强食管鳞癌细胞的侵袭迁移能力。  相似文献   

8.
The MICA (MHC class I chain-related molecule A) is a ligand for the activating immunoreceptor NKG2D (natural killer group 2, member D). NKG2D recognizes MICA expressing at the cell surface for cell elimination. Although MICA is overexpressed in many kinds of tumours, tumour cells can cleverly escape immunosurveillance. One underlying mechanism for immunoescape is tumour-derived MICA shedding. In this study, we report that osteosarcoma-derived MICA results from proteolytic cleavage of MICA α3 ectodomain. sMICA (soluble MICA) might be released in the early stage of disease. A MMP9 (matrix metalloproteinase 9, gelatinase B)-specific inhibitor suppressed sMICA release, indicating that MMP9 is critically involved in the osteosarcoma-associated proteolytic release of sMICA, which facilitates tumour immune escape. Using a specific MMP inhibitor might represent a double-edged sword, where it can inhibit tumour invasion and restore antitumour immune response.  相似文献   

9.
Matrix metalloproteinases (MMPs) have critical functions in tumour vasculogenic mimicry (VM). This study explored the mechanisms underlying MMP‐13 and MMP‐2 regulation of tumour VM formation in large cell lung cancer (LCLC). In our study, laminin5 (Ln‐5) fragments cleaved by MMP‐2 promoted tubular structure formation by the LCLC cell lines H460 and H661 in three‐dimensional (3D) cultures. Transient up‐regulation of MMP‐13 or treatment with recombinant MMP‐13 protein abrogated tubular structure formation of H460 cells in 3D culture. Treated cells with Ln‐5 fragments cleaved by MMP‐2 stimulated EGFR and F‐actin expression. Ln‐5 fragments cleaved by MMP‐13 decreased EGFR/F‐actin expression and disrupted VM formation. MMP‐13 expression was negatively correlated with VM, Ln‐5 and EGFR in LCLC tissues and xenograft. In vivo experiments revealed that VM was decreased when the number of endothelium‐dependent vessels (EDVs) increased during xenograft tumour growth, whereas MMP‐13 expression was progressively increased. In conclusion, MMP‐2 promoted and MMP‐13 disrupted VM formation in LCLC by cleaving Ln‐5 to influence EGFR signal activation. MMP‐13 may regulate VM and EDV formation.  相似文献   

10.
Oesophageal squamous cell carcinoma (ESCC), the most common form of oesophageal malignancies in the Asia‐Pacific region, remains a major clinical challenge. In this study, we found that ivermectin, an effective antiparasitic drug that has been approved for patients to orally treat onchocerciasis for over 30 years, displayed potent antitumour activity against ESCC cells in vitro and in nude mice. We demonstrated that ivermectin significantly inhibited cell viability and colony formation, and induced apoptosis through a mitochondrial‐dependent manner in ESCC cells. Ivermectin also abrogated ESCC cell migration, invasion, as well as the protein levels of MMP‐2 and MMP‐9. Mechanistically, ivermectin strongly inhibited the expression of PAK1; by further gain‐ and loss‐of‐function experiments, we confirmed that PAK1 played a crucial role in ivermectin‐mediated inhibitory effects on ESCC cells. In addition, the data indicated that ivermectin promoted PAK1 degradation through the proteasome‐dependent pathway. Additionally, ivermectin synergized with chemotherapeutic drugs including cisplatin and 5‐fluorouracil to induce apoptosis of ESCC cells. Interestingly, the in vivo experiments also confirmed that ivermectin effectively suppressed tumour growth and lung metastasis of ESCC. Collectively, these results indicate that ivermectin exerts a potent antitumour activity against ESCC and is a promising therapeutic candidate drug for ESCC patients, even those carrying metastasis.  相似文献   

11.
SHIP-1 是一个含有SH2结构域的肌醇5磷酸酶,在造血过程中起负调节作用。为了调查SHIP-1对癌细胞的迁移能力和MMP2分泌是否有影响,我们制作了鼠SHIP-1的3种突变体,△SH2-SHIP-1, △Ptase-SHIP-1, △Cter-SHIP-1,并与其野生型全长cDNA 一起分别插入到真核表达载体pcDNA3中,分别转染 src 转化的 3Y1 细胞系(SR3Y1),Western blot筛选稳定转染并表达SHIP-1的克隆。对这些克隆的MMP2、MMP9和细胞侵润能力的测定结果显示,野生型全长SHIP-1转染3Y1和SR3Y1不影响其MMP2的分泌,但能诱导MMP9分泌。但其3种突变体 SHIP-1转染却都能显著地抑制SR3Y1细胞的MMP2和MMP9分泌,并抑制其侵润能力。野生型全长SHIP-1也能抑制SR3Y1的侵润能力。研究结果肯定了SHIP-1对转化细胞的迁移和侵润是一个负调节因子,并且它的3个结构域都参与了这种负调节作用。  相似文献   

12.
Tissue factor pathway inhibitor‐2 (TFPI‐2) is a potent inhibitor of plasmin which activates matrix metalloproteinases (MMPs) involved in degradation of the extracellular matrix. Its secretion in the tumour microenvironment makes TFPI‐2 a potential inhibitor of tumour invasion and metastasis. As demonstrated in aggressive cancers, TFPI‐2 is frequently down‐regulated in cancer cells, but the mechanisms involved in the inhibition of tumour progression remained unclear. We showed in this study that stable TFPI‐2 down‐regulation in the National Cancer Institute (NCI)‐H460 non‐small cell lung cancer cell line using specific micro interfering micro‐interfering RNA promoted tumour progression in a nude mice orthotopic model that resulted in an increase in cell invasion. Moreover, TFPI‐2 down‐regulation enhanced cell adhesion to collagen IV and laminin via an increase in α1 integrin on cell surface, and increased MMP expression (mainly MMP‐1 and ‐3) contributing to cancer cell invasion through basement membrane components. This study also reveals for the first time that pulmonary fibroblasts incubated with conditioned media from TFPI‐2 silencing cancer cells exhibited increased expression of MMPs, particularly MMP‐1, ‐3 and ‐7, that are likely involved in lung cancer cell invasion through the surrounding stromal tissue, thus enhancing formation of metastases.  相似文献   

13.
目的 为了探究miR-375是否通过影响基质金属蛋白酶13(MMP13)的表达来调控骨肉瘤(osteosarcoma,OS)恶性特征。方法 用Lipofectamine 3000试剂盒将质粒、miRNA转染至骨肉瘤细胞和HEK293细胞中。实时定量聚合酶链反应(real-time quantitative PCR,RT-qPCR)检测OS患者和OS细胞中miR-375和MMP13的表达。蛋白质印迹法(Western blot)分析OS患者和OS细胞中MMP13蛋白的表达。双荧光素酶法分析miR-375与MMP13的靶向关系。伤口愈合和transwell实验分别分析OS细胞的迁移和侵袭。结果 OS组织中miR-375的表达低于正常组织。MMP13在OS组织中表达上调。在OS患者中,MMP13的表达与miR-375呈负相关。与转染miRNA对照的OS细胞相比,转染miR-375模拟物OS细胞的迁移和侵袭明显被抑制。MMP13能部分逆转miR-375对OS细胞迁移和侵袭的抑制作用。结论 在OS细胞中,过表达miR-375通过调控MMP13的表达抑制细胞的迁移和侵袭。  相似文献   

14.
DNA methylation is a critical epigenetic mechanism involved in key cellular processes. Its deregulation has been linked to many human cancers including esophageal squamous cell carcinoma (ESCC). This study was designed to explore the whole methylation status of ESCC and to identify potential plasma biomarkers for early diagnosis. We used Infinium Methylation 450k array to analyze ESCC tissues (n = 4), paired normal surrounding tissues (n = 4) and normal mucosa from healthy individuals (n = 4), and combined these with gene expression data from the GEO database. One hundred and sixty eight genes had differentially methylated CpG sites in their promoter region and a gene expression pattern inverse to the direction of change in DNA methylation. These genes were involved in several cancer-related pathways. Three genes were validated in additional 42 ESCC tissues and paired normal surrounding tissues. The methylation frequency of EPB41L3, GPX3, and COL14A1 were higher in tumor tissues than in normal surrounding tissues (P<0.017). The higher methylation frequency of EPB41l3 was correlated with large tumor size (P = 0.044) and advanced pT tumor stage (P = 0.001). The higher methylation frequency of GPX3 and COL14A1 were correlated with advanced pN tumor stage (P = 0.001 and P<0.001). The methylation of EPB41L3, GPX3, and COL14A1 genes were only found in ESCC patients'' plasma, but not in normal individuals upon testing 42 ESCC patients and 50 healthy individuals. Diagnostic sensitivity was increased when methylation of any of the 3 genes were counted (64.3% sensitivity and 100% specificity). These differentially methylated genes in plasma may be used as biomarkers for early diagnosis of ESCC.  相似文献   

15.
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.  相似文献   

16.
Rho-associated coiled-coil-containing protein kinase 2 (Rock2) is a downstream effector of Rho that plays an important role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). Matrix metalloproteinase 2 (MMP2) is a master regulator of tumor metastasis. In this study, we investigated the collections of Rock2 and MMP2 in HCCs and determined the potential role and molecular mechanism of Rock2 in MMP2-mediated invasiveness and metastasis. We found that Rock2 and MMP2 were markedly overexpressed in HCCs compared with the corresponding adjacent tissues, where a positive correlation in their expression was found. The knockdown of Rock2 significantly decreased MMP2 expression and inhibited the invasion and metastasis of HCC in vitro and in vivo. Additionally, the upregulation of MMP2 rescued the decreased migration and invasion induced by the knockdown of Rock2, whereas the knockdown of MMP2 decreased Rock2-enhanced HCC migration and invasion. Mechanistically, Rock2 stabilized MMP2 by preventing its ubiquitination and degradation. Together, our results link two drivers of invasion and metastasis in HCC and identify a novel pathway for MMP2 control.  相似文献   

17.
目的:研究血清应答因子(serum response factor,SRF)在人食管鳞癌细胞体外侵袭转移中的意义。方法:选用EC9706-H、EC9706-L和EC109-H、EC109-L两对高低转移细胞系,采用细胞划痕实验验证食管鳞癌高低转移细胞系体外侵袭转移能力的差异;Western blot检测SRF在两对食管鳞癌高低转移细胞系中的差异表达;在EC9706-H、EC109-H细胞中加入CCG(SRF抑制剂)抑制SRF的表达后,检测其侵袭转移能力的变化。结果:细胞划痕实验验证了两对食管鳞癌高低转移细胞系侵袭转移能力的差异;Western blot结果提示SRF在EC9706-H、EC109-H细胞中的表达水平显著高于EC9706-L、EC109-L细胞;在EC9706-H、EC109-H细胞中加入CCG抑制SRF的表达后,其侵袭转移能力明显减退。结论:SRF在高转移性食管鳞癌细胞系中呈现高表达,在低转移性食管鳞癌细胞系中呈现低表达,抑制高转移性食管鳞癌细胞系中SRF的表达后,其侵袭转移能力下降,提示SRF和食管鳞癌的侵袭转移能力呈正相关。  相似文献   

18.
Nasopharyngeal carcinoma (NPC) is known for its potential to progress to the lymph nodes and distant metastases at an early stage. As an important regulator in tumorigenesis biological processes, the functions of lncRNA in NPC tumor development remain largely unclear. In this research, the expression of EPB41L4A-AS2 in NPC tissues and cells was analyzed via real-time quantitative polymerase chain reaction (qRT-PCR). CCK8, colony formation, and EDU experiments were used to determine the viability of NPC cells. Transwell and wound healing assays were performed to test NPC cell migration and invasion. RNA pull-down and mass spectrometry analysis were used to identify potential binding proteins. Then, a popliteal lymph node metastasis model was established to test NPC metastasis. EPB41L4A-AS2 is repressed by transforming growth factor-beta, which is downregulated in NPC cells and tissue. It is associated with the presence of distant metastasis and adverse outcomes. The univariate and multivariate survival assays confirmed that EPB41L4A-AS2 expression was an independent predictor of progression-free survival (PFS) in patients with NPC. Biological analyses showed that overexpression of EPB41L4A-AS2 reduced the metastasis and invasion of NPC in vitro and in vivo, but had no significant effect on cell proliferation. Mechanistically, in the nucleus we identified that EPB41L4A-AS2 relies on binding to YBX1 to reduce the stability of Snail mRNA to enhance the expression of E-cadherin and reverse the progression of epithelial-to-mesenchymal transition (EMT). In the cytoplasm, we found that EPB41L4A-AS2 blocked the invasion and migration of NPC cells by promoting LATS2 expression via sponging miR-107. In a whole, the findings of this study help to further understand the metastasis mechanism of NPC and could help in the prevention and treatment of NPC metastasis.  相似文献   

19.
Increasing evidence has demonstrated that Ctr1 plays a crucial role in the regulation of cisplatin uptake in a variety of tumors. The purpose of this study was to investigate its role in mediating cisplatin sensitivity in ESCC cells. Immunohistochemistry (IHC), In situ hybridization (ISH) and semi-quantitative RT-PCR were used to detect Ctr1 expressions in ESCC tissues. qRT-PCR and Western blot was performed to investigate the levels of Ctr1 mRNA and protein in ESCC cells. CCK-8, Flow cytometry and Transwell chamber assay were carried out to examine cell proliferation, apoptosis, migration and invasion abilities in ESCC cells. We found that ESCC tissues and cells had higher Ctr1 level than normal tissues and Het-1A cell. Ctr1 expression was correlated with histological grade, invasion depth, TNM staging and lymph node metastasis in ESCC patients. Ctr1 depletion reduced the suppressive role of proliferation, migration and invasion as well as the inductive role of cell apoptosis and Caspase-3 activity evoked by cisplatin, whereas Ctr1 upregulation combined with cisplatin exerted the synergistic role in regulation of proliferation, apoptosis, Caspase-3 activity, migration and invasion in ESCC. In conclusion, Ctr1 is implicated in ESCC development and progression and its expression may be a novel predictor for assessment of cisplatin sensitivity in ESCC.  相似文献   

20.
MMP19 and MMP23B belong to the Matrix metalloproteases (MMPs) family, which are zinc-binding endopeptidases that are capable of degrading various components of the extracellular matrix. They are thought to play important roles in embryonic development, reproduction and tissue remodeling, as well as in cell proliferation, differentiation, migration, angiogenesis, apoptosis and host defense. However, they are poorly understood in pigs. Here, we obtained the full length coding region sequence and genomic sequence of the porcine MMP19 and MMP23B genes and analyzed their genomic structures. The deduced amino acid sequence shares similar precursor protein domains with human and mouse MMP19 and MMP23B protein, respectively. Using IMpRH panel, MMP19 was mapped to SSC5p12-q11 (closely linked to microsatellite DK) and MMP23B was mapped to SSC8q11-q12 (linked to microsatellite Sw2521). Quantitative real-time PCR showed that MMP19 was abundantly expressed in the liver, while MMP23B was strongly expressed in the ovarian and heart. Furthermore, both genes were all expressed increasingly in prenatal skeletal muscle during development. Three SNPs were detected by sequencing and PCR-RFLP methods, and association analysis indicated that C203T at exon 5 of MMP19 has a significant association with the blood parameters WBC (G/L) and IgG2 (mg/mL) (P<0.05), SNP C131T at exon 3 of MMP23B is significantly associated with the blood parameters HGB (g/L) and MCH (P<0.05), and A150G in exon 4 has no significant association with the economic traits in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号