首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic ‘reader’ Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.  相似文献   

4.
5.
6.
7.
The UvsW protein of bacteriophage T4 is involved in many aspects of phage DNA metabolism, including repair, recombination, and recombination-dependent replication. UvsW has also been implicated in the repression of origin-dependent replication at late times of infection, when UvsW is normally synthesized. Two well-characterized T4 origins, ori(uvsY) and ori(34), are believed to initiate replication through an R-loop mechanism. Here we provide both in vivo and in vitro evidence that UvsW is an RNA-DNA helicase that catalyzes the dissociation of RNA from origin R-loops. Two-dimensional gel analyses show that the replicative intermediates formed at ori(uvsY) persist longer in a uvsW mutant infection than in a wild-type infection. In addition, the inappropriate early expression of UvsW protein results in the loss of these replicative intermediates. Using a synthetic origin R-loop, we also demonstrate that purified UvsW functions as a helicase that efficiently dissociates RNA from R-loops. These and previous results from a number of studies provide strong evidence that UvsW is a molecular switch that allows T4 replication to progress from a mode that initiates from R-loops at origins to a mode that initiates from D-loops formed by recombination proteins.  相似文献   

8.
Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO‐dependent DNA damage response (UbS‐DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N‐terminal region of BLM and subsequent BLM binding to the ubiquitin‐interacting motifs of RAP80. Furthermore, we show that this mechanism of BLM relocalization is essential for BLM's ability to suppress excessive/uncontrolled HR at stalled replication forks. Unexpectedly, we also uncovered a requirement for RNF8‐dependent ubiquitylation of BLM and PML for maintaining the integrity of PML‐associated nuclear bodies and as a consequence the localization of BLM to these structures. Lastly, we identified a novel role for RAP80 in preventing proteasomal degradation of BLM in unstressed cells. Taken together, these data highlight an important biochemical link between the UbS‐DDR and BLM‐dependent pathways involved in maintaining genome stability.  相似文献   

9.
10.
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.  相似文献   

11.
Escherichia coli RecG and RecA proteins in R-loop formation.   总被引:10,自引:2,他引:10       下载免费PDF全文
X Hong  G W Cadwell    T Kogoma 《The EMBO journal》1995,14(10):2385-2392
  相似文献   

12.
The formation of RNA–DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.  相似文献   

13.
14.
15.
16.
17.
18.
19.
潘学峰  姜楠  陈细芳  周晓宏  丁良  段斐 《遗传》2014,36(12):1185-1194
R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。  相似文献   

20.
DNA replication, the faithful copying of genetic material, must be tightly regulated to produce daughter cells with intact copies of the chromosome(s). This regulated replication is initiated by binding of specific proteins at replication origins, such as DnaA to oriC in bacteria. However, unregulated replication can sometimes be initiated at other sites, which can threaten genomic stability. One of the first systems of unregulated replication to be described is the one activated in Escherichia coli mutants lacking RNase HI (rnhA). In fact, rnhA mutants can replicate their chromosomes in a DnaA- and oriC-independent process. Because this replication occurs in cells lacking RNase HI, it is proposed that RNA from R-loops is used as a DNA polymerase primer. Replication from R-loops has recently attracted increased attention due to the advent of DNA:RNA hybrid immunoprecipitation coupled with high-throughput DNA sequencing that revealed the high prevalence of R-loop formation in many organisms, and the demonstration that R-loops can severely threaten genomic stability. Although R-loops have been linked to genomic instability mostly via replication stress, evidence of their toxic effects via unregulated replication has also been presented. Replication from R-loops may also beneficially trigger stress-induced mutagenesis (SIM) that assists bacterial adaptation to stress. Here, we describe the cis- and trans-acting elements involved in R-loop-dependent replication in bacteria, with an emphasis on new data obtained with type 1A topoisomerase mutants and new available technologies. Furthermore, we discuss about the mechanism(s) by which R-loops can reshape the genome with both negative and positive outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号