首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canada's federal recovery strategy for boreal woodland caribou (Rangifer tarandus caribou) classifies areas burned by forest fire as disturbed habitat. This assignment of fire as a disturbance has potential economic and social implications across Canada, and influences plans and actions to achieve caribou conservation and recovery. Previous researchers have reported caribou avoid burned habitat, but these studies did not typically consider unburned residual patches within fire perimeters. Additionally, the implications of burned habitat on individual caribou survival is unclear. We examined resource selection by boreal woodland caribou of burns, and unburned residual patches, using global positioning system (GPS) locations for 201 caribou across 6 caribou populations in Alberta, Canada. We also examined if burned habitat affected the survival of adult female caribou. Caribou avoided burns and unburned residual patches. Increased use of burned habitats, however, did not lower the survival of adult caribou. Collectively, these results provide evidence to support current assertions that burns, and the embedded unburned residual patches are not preferred caribou habitat and increase our understanding of the implications of forest fire for caribou vital rates. Our investigation offers important information about the role of forest fire in caribou ecology and enhances the identification of disturbed habitat under recovery strategy guidelines to effectively address caribou population declines. © 2021 The Wildlife Society.  相似文献   

2.
Congruent responses to weather variability in high arctic herbivores   总被引:1,自引:0,他引:1  
Assessing the role of weather in the dynamics of wildlife populations is a pressing task in the face of rapid environmental change. Rodents and ruminants are abundant herbivore species in most Arctic ecosystems, many of which are experiencing particularly rapid climate change. Their different life-history characteristics, with the exception of their trophic position, suggest that they should show different responses to environmental variation. Here we show that the only mammalian herbivores on the Arctic islands of Svalbard, reindeer (Rangifer tarandus) and sibling voles (Microtus levis), exhibit strong synchrony in population parameters. This synchrony is due to rain-on-snow events that cause ground ice and demonstrates that climate impacts can be similarly integrated and expressed in species with highly contrasting life histories. The finding suggests that responses of wildlife populations to climate variability and change might be more consistent in Polar regions than elsewhere owing to the strength of the climate impact and the simplicity of the ecosystem.  相似文献   

3.
4.
For species at risk, it is important that demographic models be consistent with our most recent knowledge because alternate model versions can have differing predictions for wildlife and natural resource management. To establish and maintain this consistency, we can compare predicted model values to current or past observations and demographic knowledge. When novel predictor information becomes available, testing for consistency between modeled and observed values ensures the best models are used for robust, evidence-based, wildlife management. We combine novel information on the extent of historical disturbance regimes (industrial and fire) to an existing demographic model and predict historical and projected demographics of woodland caribou (Rangifer tarandus caribou). Exploring 6 simulation experiments across 5 populations in Alberta, Canada, we identify the relative importance of industrial disturbance, fire, and population density to observed population size and growth rate. We confirm the onset of significant declines across all 5 populations began approximately 30 years ago, demonstrate these declines have been consistent, and conclude they are more likely due to industrial disturbance from the oil and gas sector within contemporary population ranges than historical fire regimes. These findings reinforce recent research on the cause of woodland caribou declines. Testing for consistency between observations and models prescribed for species recovery is paramount for assessing the cause of declines, projecting population trends, and refining recovery strategies for effective wildlife management. We provide a novel simulation method for conducting these tests. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

5.
Abstract: Mountain caribou are an ecotype of woodland caribou (Rangifer tarandus caribou) that live in subalpine forests in southeastern British Columbia, Canada, extending into northern Idaho and Washington, USA. These caribou are listed as Threatened in Canada, Endangered in the United States, and are the subject of recovery planning efforts in both countries. Many areas of mountain caribou winter habitat experience intensive use by recreational snowmobilers. During 4 surveys, we recorded caribou on all 4 census blocks with little or no snowmobile activity (x̄ density = 0.41 caribou/km2), but during 3 of 4 years, we observed no caribou on the census block with intensive snowmobile activity. The year we observed caribou on the snowmobile block, most were using areas inaccessible to snowmobiles. We used a Resource Selection Function (RSF) based on radiotelemetry data for the area to compare habitat quality among the different census blocks. The absence of caribou from the intensive snowmobile area during most years could not be explained by differences in habitat quality. The RSF predicted that the intensive snowmobile area could support 53-96 caribou (95% CI). We conclude that intensive snowmobiling has displaced caribou from an area of suitable habitat. We recommend that snowmobile activity be restricted from all or most high-quality mountain caribou habitat as part of the recovery planning process.  相似文献   

6.
In western Canada, anthropogenic disturbances resulting from resource extraction activities are associated with habitat loss and altered predator–prey dynamics. These habitat changes are linked to increased predation risk and unsustainable mortality rates for caribou (Rangifer tarandus caribou). To inform effective habitat restoration, our goal was to examine whether specific linear disturbance features were associated with caribou predation in central mountain caribou ranges. We used predation‐caused caribou mortalities and caribou GPS‐collar data collected between 2008 and 2015 to assess caribou predation risk within and outside of protected areas at four spatio‐temporal scales: habitat use during the (a) 30 days, (b) 7 days, and (c) 24 hours prior to caribou being killed, and (d) characteristics at caribou kill site locations. Outside of protected areas, predation risk increased closer to pipelines, seismic lines, and streams. Within protected areas, predation risk increased closer to alpine habitat. Factors predicting predation risk differed among spatio‐temporal scales and linear feature types: predation risk increased closer to pipelines during the 30 and 7 days prior to caribou being killed and closer to seismic lines during the 30 days, 7 days, and 24 hours prior, but decreased closer to roads during the 30 days prior to being killed. By assessing habitat use prior to caribou being killed, we identified caribou predation risk factors that would not have been detected by analysis of kill site locations alone. These results provide further evidence that restoration of anthropogenic linear disturbance features should be an immediate priority for caribou recovery in central mountain caribou ranges.  相似文献   

7.
Trends in population growth can be monitored with data for key vital rates without knowledge of abundance. Although adult female survival has the highest elasticity for ungulate population dynamics, the more variable recruitment rates are commonly monitored to track local variation in growth rates. Specifically, recruitment is often measured using late winter young:adult age ratios, though these age ratios are difficult to reliably interpret given the contribution of multiple vital rates to annual ratios. We show that the supplementation of age ratio data with concurrent radio-telemetry monitoring of adult female survival allows both retrospective estimation of empirical population growth rates and the decomposition of recruitment-specific vital rates. We demonstrate the estimation of recruitment and population growth rates for 1 woodland caribou population using these methods, including elasticity and life-stage simulation analysis of the relative contribution of adult female survival and recruitment rates to variation in population growth. We show, for this woodland caribou population, that adult female survival and recruitment rates were nearly equivalent drivers of population growth. We recommend the concurrent monitoring of adult female survival to reliably interpret age ratios when managing caribou and other ungulates. © 2011 The Wildlife Society.  相似文献   

8.
Abstract: The decline of woodland caribou (Rangifer tarandus caribou) has been attributed to anthropogenic landscape disturbances, but critical distance thresholds and time lags between disturbance and extirpation are unknown. Using a database of caribou presence and extirpation for northern Ontario, Canada, geo-coded to 10 times 10-km cells, we constructed logistic regression models to predict caribou extirpation based on distance to the nearest of each of 9 disturbance types: forest cutovers, fires, roads, utility corridors, mines, pits and quarries, lakes, trails, and rail lines. We used Akaike's Information Criterion to select parsimonious models and Receiver-Operating Characteristic curves to derive optimal thresholds. To deal with the effects of spatial autocorrelation on estimates of model significance, we used subsampling and restricted randomizations. Forest cutovers were the best predictor of caribou occupancy, with a tolerance threshold of 13 km to nearest cutover and a time lag of 2 decades between disturbance by cutting and caribou extirpation. Management of woodland caribou should incorporate buffers around habitat and requires long-term monitoring of range occupancy.  相似文献   

9.
10.
Population monitoring is a critical part of effective wildlife management, but methods are prone to biases that can hinder our ability to accurately track changes in populations through time. Calf survival plays an important role in ungulate population dynamics and can be monitored using telemetry and herd composition surveys. These methods, however, are susceptible to unrepresentative sampling and violations of the assumption of equal detectability, respectively. Here, we capitalized on 55 herd‐wide estimates of woodland caribou (Rangifer tarandus caribou) calf survival in Newfoundland, Canada, using telemetry (n = 1,175 calves) and 249 herd‐wide estimates of calf:cow ratios (C:C) using herd composition surveys to investigate these potential biases. These data included 17 herd‐wide estimates replicated from both methods concurrently (n = 448 calves and n = 17 surveys) which we used to understand which processes and sampling biases contributed to disagreement between estimates of herd‐wide calf survival. We used Cox proportional hazards models to determine whether estimates of calf mortality risk were biased by the date a calf was collared. We also used linear mixed‐effects models to determine whether estimates of C:C ratios were biased by survey date and herd size. We found that calves collared later in the calving season had a higher mortality risk and that C:C tended to be higher for surveys conducted later in the autumn. When we used these relationships to modify estimates of herd‐wide calf survival derived from telemetry and herd composition surveys concurrently, we found that formerly disparate estimates of woodland caribou calf survival now overlapped (within a 95% confidence interval) in a majority of cases. Our case study highlights the potential of under‐appreciated biases to impact our understanding of population dynamics and suggests ways that managers can limit the influence of these biases in the two widely applied methods for estimating herd‐wide survival.  相似文献   

11.
12.
The long‐term persistence of forest‐dwelling caribou (Rangifer tarandus caribou) will probably be determined by management and conservation decisions. Understanding the evolutionary relationships between modern caribou herds, and how these relationships have changed through time will provide key information for the design of appropriate management strategies. To explore these relationships, we amplified microsatellite and mitochondrial markers from modern caribou from across the Southern Yukon, Canada, as well as mitochondrial DNA from Holocene specimens recovered from alpine ice patches in the same region. Our analyses identify a genetically distinct group of caribou composed of herds from the Southern Lakes region that may warrant special management consideration. We also identify a partial genetic replacement event occurring 1000 years before present, coincident with the deposition of the White River tephra and the Medieval Warm Period. These results suggest that, in the face of increasing anthropogenic pressures and climate variability, maintaining the ability of caribou herds to expand in numbers and range may be more important than protecting the survival of any individual, isolated sedentary forest‐dwelling herd.  相似文献   

13.
ABSTRACT Anthropogenic disturbances can promote establishment and growth of predator populations in areas where secondary prey can then become threatened. In this study, we investigated habitat selection of eastern coyotes (Canis latrans), a relatively new predator in the vicinity of an endangered population of caribou (Rangifer tarandus caribou). We hypothesized that coyotes in the boreal forest depend mainly on disturbed habitat, particularly that of anthropogenic origin, because these habitats provide increased food accessibility. Coyotes would likely take advantage of moose (Alces alces) carcasses, berries, and snowshoe hares (Lepus americanus) found in open habitats created by logging. To test these predictions, we described coyote diet and habitat selection at different spatial and temporal levels and then compared resource availability between habitats. To do so, we installed Global Positioning System radiocollars on 23 individual coyotes in the Gaspésie Peninsula, eastern Québec, Canada. Coyotes selected clear-cuts of 5–20 years and avoided mature coniferous forests both at the landscape and home-range levels. Clear-cuts of 5–20 years were found to contain a high availability of moose carcasses and berries, and vulnerability of snowshoe hares is known to increase in clear-cuts. The importance of these 3 food resources was confirmed by the characteristics of core areas used by coyotes and diet analysis. Moose remains were found at 45% of core areas and coyote diet comprised 51% moose on an annual basis. Anthropogenic disturbances in the boreal forest thus seem to benefit coyotes. Our results indicated that the relationship between coyotes and caribou likely involves spillover predation. This knowledge allows managers to consider spillover predation by coyotes as a possible threat for endangered caribou population when the predator depends mainly on habitat of anthropogenic origin and to suggest methods to alleviate it when developing management plans.  相似文献   

14.
The Bathurst herd of barren-ground caribou (Rangifer tarandus groenlandicus) in the Canadian central arctic declined from an estimated 203,800 to 16,400 breeding females from 1986 to 2009, with the most rapid decline from 2006 to 2009. A key research and management question was whether the decline was mainly due to decreases in productivity alone or also due to reduced adult female survival. Investigating causes of the decline was hampered by a lack of direct estimates of caribou demographic parameters. We developed a demographic model that could be objectively fitted to field data to explore the mechanisms for the Bathurst decline, with a focus on the recent accelerated decline from 2006 to 2009. Our modeling indicated that the decline was driven by increasing negative trends in adult female and calf survival rates and possibly reduced fecundity The effect of a constant hunter harvest on the declining herd was one potential cause for the recent accelerated decline in adult survival. The demographic model detected negative trends in adult female survival that were not detected using standalone analyses of collar-based survival data. The model allowed rigorous interpretation of trends in productivity by controlling for the simultaneous influence of trends in adult, calf, and yearling survival and adult fecundity on field-based calf–cow ratios. Stochastic simulations suggested that large increases in adult survival and productivity would be needed for the herd to recover. Our methods enable objective modeling of caribou demography that can assist in caribou management based upon all sources of available data. © 2011 The Wildlife Society.  相似文献   

15.
In polygynous species, male reproductive success is often correlated with dominance status of individual males and sex ratio in the population. Reindeer, Rangifer tarandus, is a polygynous species, and here we compared the variation in male reproductive success and dominance status during two successive years in a herd with a male:female sex ratio of 1:7 and 1:3. Copulations were recorded, together with data on male dominance hierarchy and size of mating groups. Male reproductive success was estimated by paternity analysis of calves using microsatellite DNA markers. The distribution of reproductive success among the males was highly skewed for both years with the most dominant male also being the most successful. The largest mating group was established in the herd with the least skew in sex ratio. In this herd some of the adult males present were less reproductively successful than some of the more subordinate younger males. Estimates of the mating group size of males, correcting for dominance status when more than one male is present in the groups, gave good prediction of individual males' reproductive success.  相似文献   

16.
In highly seasonal environments, offspring production by vertebrates is timed to coincide with the annual peak of resource availability. For herbivores, this resource peak is represented by the annual onset and progression of the plant growth season. As plant phenology advances in response to climatic warming, there is potential for development of a mismatch between the peak of resource demands by reproducing herbivores and the peak of resource availability. For migratory herbivores, such as caribou, development of a trophic mismatch is particularly likely because the timing of their seasonal migration to summer ranges, where calves are born, is cued by changes in day length, while onset of the plant-growing season on the same ranges is cued by local temperatures. Using data collected since 1993 on timing of calving by caribou and timing of plant growth in West Greenland, we document the consequences for reproductive success of a developing trophic mismatch between caribou and their forage plants. As mean spring temperatures at our study site have risen by more than 4 degrees C, caribou have not kept pace with advancement of the plant-growing season on their calving range. As a consequence, offspring mortality has risen and offspring production has dropped fourfold.  相似文献   

17.
Genetic variation in caribou and reindeer (Rangifer tarandus)   总被引:2,自引:0,他引:2  
Genetic variation at seven microsatellite DNA loci was quantified in 19 herds of wild caribou and domestic reindeer (Rangifer tarandus) from North America, Scandinavia and Russia. There is an average of 2.0-6.6 alleles per locus and observed individual heterozygosity of 0.33-0.50 in most herds. A herd on Svalbard Island, Scandinavia, is an exception, with relatively few alleles and low heterozygosity. The Central Arctic, Western Arctic and Porcupine River caribou herds in Alaska have similar allele frequencies and comprise one breeding population. Domestic reindeer in Alaska originated from transplants from Siberia, Russia, more than 100 years ago. Reindeer in Alaska and Siberia have different allele frequencies at several loci, but a relatively low level of genetic differentiation. Wild caribou and domestic reindeer in Alaska have significantly different allele frequencies at the seven loci, indicating that gene flow between reindeer and caribou in Alaska has been limited.  相似文献   

18.
Three caribou ecotypes are present in easternNorth America: the mountain caribou which isfound south of the St. Lawrence River, thebarren-ground caribou which calves in thetundra, and in between, the forest-dwellingecotype which lives all year long in the borealforest. Blood and muscle samples were collectedfrom seven populations and characterized ateight microsatellite loci to test thehypotheses that forest-dwelling andbarren-ground ecotypes constitute a singlemetapopulation and that geographical isolationresults in reduced genetic diversity. The meannumber of alleles per locus, allelic richness,and observed and expected heterozygositydeclined from north to south and were thesmallest in isolated forest-dwellingpopulations. Correspondence analysis showedthree groups of samples corresponding to thethree ecotypes. Gene flow estimates weremoderate or high among all forest-dwellingpopulations and particularly between those <200 km apart. Our results suggest that thethree caribou ecotypes represent three distinctgenetic entities and that the forest-dwellingpopulations in the continuous range form ametapopulation. Genetic diversity was lower inisolated populations but does not seem to be ofimmediate concern for conservation. We proposethat management strategies should favorincrease in caribou numbers in order to avoidextinction due to stochastic events and tomaintain local biodiversity. In the continuousrange, conservation strategies of cariboupopulations must be planned on a large scale tomaintain occasional exchanges betweenpopulations, thus preserving genetic diversity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号