首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A salient feature of shoot meristem growth is the maintenance of distinct anatomical and morphological features despite a continuous flux of cells. To investigate how meristem organization is self-perpetuated, we developed a protocol for the analysis of meristem growth in 3-D. Our protocol uses a non-destructive replica method to follow the pattern of cell expansion and cell divisions on the meristem surface over several days. Algorithms to reconstruct the meristem surface and compute its curvature and rate of extension were implemented. We applied this approach to the shoot apical meristem of Anagallis arvensis and showed that a subcellular resolution of extension rates can be achieved. This is the first detailed quantitative analysis of meristem geometry and surface expansion in 3-D. This new approach will be useful to connect cellular activities such as cell expansion, cell division, and differential gene expression with overall meristem morphogenesis.  相似文献   

2.
《Current biology : CB》2020,30(10):1893-1904.e4
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

3.
The aerial part of seed plants is called the shoot, which is composed of stems, leaves, and axial buds. These are produced by indeterminate activity in the shoot apical meristem (SAM), whereas the morphogenesis of leaves depends on determinate activity of leaf meristems. However, one-leaf plants in the Gesneriaceae family (eudicots) do not have a typical SAM and do not produce new organs when in the vegetative phase. Instead, they have one cotyledon whose growth is indeterminate. This peculiar development is supported by the groove meristem, which corresponds to the canonical SAM, and the basal meristem, which corresponds to the typical leaf meristem. However, the former does not produce any organ and the latter is active indeterminately. Gene expression and physiological analyses have been conducted in an effort to determine the molecular nature of this peculiar organogenesis. This review summarizes the current understanding of the development of one-leaf plants to provide future perspectives in this field of research.  相似文献   

4.
Stem cells in plants, established during embryogenesis, are located in the centers of the shoot apical meristem (SAM) and the root apical meristem (RAM). Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely. Although fully differentiated organs such as leaves do not contain stem cells, cells in such organs do have the capacity to re-establish new stem cells, especially under the induction of phytohormones in vitro. Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia, respectively. This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.  相似文献   

5.
  相似文献   

6.
7.
The shoot apex development during the life cycle of Crocus sativus L. was characterized by light microscopy and two-dimensional gel electrophoresis. Using silver staining of polyacrylamide gels, numerous quantitative and qualitative changes in the populations of polypeptides were observed during transition from vegetative to prefloral and from prefloral to floral stages. Using 80 g protein, we were able to detect 352 polypeptidic spots. In comparison with the vegetative apex, 89 new polypeptides were identified in the prefloral meristem and 29 polypeptides were missing. In the reproductive meristem, 94 new spots were identified and 44 spots were missing. Thus, substantial quantitative and qualitative changes in the populations of polypeptides occurred during the prefloral stage, a point of no return in plant development, i.e., and before floral primordia initiation.  相似文献   

8.
9.
Podostemaceae are unusual aquatic angiosperms adapting to extreme habitats, i.e., rapids and waterfalls, and have unique morphologies. We investigated the developmental anatomy of reproductive shoots scattered on crustose roots of Hydrobryum japonicum by scanning electron microscopy and using semi-thin serial sections. Two developmental patterns were observed: bracts arise either continuously from an area of meristematic cells that has produced leaves, or within differentiated root ground tissue beneath, and internal to, leaf base scars after an interruption. In both patterns, the bract primordia arise endogenously at the base of youngest bracts in the absence of shoot apical meristem, involving vacuolated-cell detachment to each bract separately. The different transition patterns of reproductive shoot development may be caused by different stages of parental vegetative shoots. The floral meristem arises between the two youngest bracts, and is similarly accompanied by cell degeneration. In contrast, the floral organs, including the spathella, arise exogenously from the meristem. Bract development, like vegetative leaf development, is unique to this podostemad, while floral-organ development is conserved.  相似文献   

10.
Stem elongation and flowering are two processes induced by long-day (LD) treatment in Silene armeria L. Whereas photoperiodic control of stem growth is mediated by gibberellins (GAs), the flowering response cannot be obtained by GA applications. Microscopic observations on early cellular changes in the shoot meristem following LD induction or GA treatment in short days (SD) were combined with GA analyses of stem sections at various distances below the shoot apex. The earliest effects of both LD and GA induction on the subapical meristem were an increase in the number of cells per cell file and a reduction of cell length in the meristematic tissue approx. 1.0–3.0 mm below the shoot apex. Within 8 d after the beginning of LD induction or after GA application, the cells in the subapical meristem were oriented in long files. In induced tips, cellulose deposition occurred mostly in longitudinal walls, indicating that many transverse cell divisions had taken place which, in turn, increased the length of the stem. In contrast to LD induction, GA treatments did not promote the transition from the vegetative to the floral stage. Endogenous GAs were analyzed by selected ion monitoring (SIM), using labeled internal standards, in extracts from transverse sections of the tip at various distances below the apical meristem. In control plants, the levels of the six 13-hydroxy GAs studied (GA53, GA44, GA19, GA20, GA1, and GA8) decreased as the distance from the apical meristem increased. Except for GA53, GA levels were higher in tips of LD-induced plants, particularly in the meristematic zone approx. 0.5–1.5 mm below the apical meristem. In comparison with SD, the highest increase observed was for GA1, the content of which increased 30-fold in the zone 0.5–3.5 mm below the shoot apex. These data indicate a spatial correlation between the accumulation of GA1 and its precursors, and the enhanced mitotic activity which occurs in the subapical meristem of elongating Silene apices.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]- gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA, for [13C]GA8, Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, for advice with mass spectrometry, and Mr. M. Chassagne, I.N.R.A. C.R. Bordeaux, for the photography. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy under contract DE-ACO2-76ERO-1338, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

11.
BACKGROUND AND AIMS: The control of dormancy in yam (Disocorea spp.) tubers is poorly understood and attempts to shorten the long dormant period (i.e. cause tubers to sprout or germinate much earlier) have been unsuccessful. The aim of this study was to identify and define the phases of dormancy in Dioscorea rotundata tubers, and to produce a framework within which dormancy can be more effectively studied. METHODS: Plants of 'TDr 131' derived from tissue culture were grown in a glasshouse simulating temperature and photoperiod at Ibadan (7 degrees N), Nigeria to produce tubers. Tubers were sampled on four occasions: 30 d before shoot senescence (149 days after planting, DAP), at shoot senescence (179 DAP), and twice during storage at a constant 25 degrees C (269 and 326 DAP). The development of the apical shoot bud was described from tissue sections. In addition, the responsiveness of shoot apical bud development to plant growth regulators (gibberellic acid, 2-chloroethanol and thiourea) applied to excised tuber sections was also examined 6 and 12 d after treatment. KEY RESULTS AND CONCLUSIONS: Three phases of tuber dormancy are proposed: Phase I, from tuber initiation to the appearance of the tuber germinating meristem; Phase II, from the tuber germinating meristem to initiation of foliar primordium; and Phase III, from foliar primordium to appearance of the shoot bud on the surface of the tuber. Phase I is the longest phase (approx. 220 d in 'TDr 131'), is not affected by PGRs and is proposed to be an endo-dormant phase. Phases II and III are shorter (<70 d in total), are influenced by PGRs and environmental conditions, and are therefore endo-/eco-dormant phases. To manipulate dormancy to allow off-season planting and more than one generation per year requires that the duration of Phase I is shortened.  相似文献   

12.
Actinocephalus exhibits perhaps more diversity in habit than any other genus of Eriocaulaceae. This variation is largely a result of differences in the arrangement of the paraclades. Based on the analysis of stem architecture of all 25 species of Actinocephalus, the following patterns were established: (1) leaf rosette, with no elongated axis, instead the axillary paraclades originating directly from the short aerial stem, (2) rosette axis continuing into an elongated axis with spirally arranged paraclades, (3) an elongated axis originating from a rhizome, with ramified paraclades, and (4) an elongated axis originating from a short aerial stem, with paraclades arranged in a subwhorl. The elongated axis exhibits indeterminate growth only in pattern 4. Patterns 3 and 4 are found exclusively in Actinocephalus; pattern 1 occurs in many other genera of Eriocaulaceae, while pattern 2 is also found in Syngonanthus and Paepalanthus. Anatomically, each stem structure (i.e., paraclade, elongated axis, short aerial stem, rhizome) is thickened in a distinctive way and this can be used to distinguish them. Specifically, elongated axes and paraclades lack thickening, thickening of short aerial stems results from the primary thickening meristem and/or the secondary thickening meristem. Thickening of rhizomes results from the activity of the primary thickening meristem.  相似文献   

13.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

14.
15.
Summary Arachis hypogaea L. peanut, has been a difficult species to manipulate in tissue culture. Lack of a reliable and quick regeneration method for peanuts has proven to be one of the hindrances in the application of transformation protocols to the crop. A protocol to initiate shoot apex elongation and rooting of these shoots is described. This protocol was successful with two peanut cultivars. Shoot apices were isolated from germinated seedlings and placed on Murashige and Skoog salts containing N6-benzyladenine for shoot initiation. Once shoot elongation occurred, the explant was transferred to a rooting medium containing Murashige and Skoog salts and only one plant growth regulator, α-naphthalene acetic acid. In as few as 3 weeks, the explants began to root and could be transferred to soil. Forty-five percent of explants isolated from germinating peanut seeds would root on this medium. Elongation and rooting of the shoot apices were not hindered by the addition of an antibiotic to the medium, indicating that the regeneration method could be useful inAgrobacterium tume-faciens-mediated transformation protocols.  相似文献   

16.
17.
18.
19.
20.
In a determinate meristem, such as a floral meristem, a genetically determined number of organs are produced before the meristem is terminated. In rice, iterative formation of organs during flower development with defects in meristem determinacy, classically called ‘proliferation’, is caused by several mutations and observed in dependence on environmental conditions. Here we report that overexpression of several JAZ proteins, key factors in jasmonate signaling, with mutations in the Jas domains causes an increase in the numbers of organs in florets, aberrant patterns of organ formation and repetitious organ production in spikelets. Our results imply that JAZ factors modulate mechanisms that regulate meristem functions during spikelet development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号