首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.  相似文献   

3.
Adult census population size (N) and effective number of breeders (Nb) are highly relevant for designing effective conservation strategies. Both parameters are often challenging to quantify, however, making it of interest to determine whether one parameter can be generalized from the other. Yet, the spatiotemporal relationship between N and Nb has not been well characterized empirically in many taxa. We analysed this relationship for 5–7 consecutive years in twelve brook trout populations varying greatly in N (49‐10032) and Nb (3‐567) and identified major environmental variables affecting the two parameters. N or habitat size alone explained 47–57% of the variance in Nb, and Nb was strongly correlated with effective population size. The ratio Nb/N ranged from 0.01 to 0.45 and increased at small N or following an annual decrease in N, suggesting density‐dependent constraints on Nb. We found no evidence for a consistent, directional difference between variability in Nb and/or Nb/N among small and large populations; however, small populations had more varying temporal variability in Nb/N ratios than large populations. Finally, Nb and Nb/N were 2.5‐ and 2.3‐fold more variable among populations than temporally within populations. Our results demonstrate a clear linkage between demographic and evolutionary parameters, suggesting that Nb could be used to approximate N (or vice versa) in natural populations. Nevertheless, using one variable to infer the other to monitor trends within populations is less recommended, perhaps even less so in small populations given their less predictable Nb vs. N dynamics.  相似文献   

4.
We examined the relationship between fruit abundance and chimpanzee (Pan troglodytes) party size by comparing data from four study sites: the Kalinzu Forest Reserve, Uganda, the Djinji Camp and Guga Camp in the Ndoki Forest, Congo, and Kahuzi-Biega National Park, Democratic Republic of Congo. Although the difference in the fruit abundance between the sites was responsible for the difference in the party size between the sites, the seasonal changes in fruit abundance did not explain the changes in the party size in each study site. Across the four study sites, there were significant correlations of the mean and minimum of monthly party size with the mean of monthly fruiting-tree density, and a significant correlation of the maximum of monthly party sizes with the minimum of monthly fruiting-tree density. We proposed a hypothesis that (1) the monthly fruit abundance affects the monthly party size in the sites where the fruit availability is as low as to limit the party size during a major part of a year, while (2) the party size does not increase with the increase in the monthly fruit abundance, but is affected by other social factors, in the sites where the minimum of monthly fruit abundance is high enough for chimpanzees to form parties of an adequate size. Electronic Publication  相似文献   

5.
6.
Effective population size (Ne) is a key parameter to understand evolutionary processes and the viability of endangered populations as it determines the rate of genetic drift and inbreeding. Low Ne can lead to inbreeding depression and reduced population adaptability. In this study, we estimated contemporary Ne using genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a natural insular house sparrow metapopulation. We investigated whether population characteristics (population size, sex ratio, immigration rate, variance in population size and population growth rate) explained variation within and among populations in the ratio of effective to census population size (Ne/Nc). In general, Ne/Nc ratios increased with immigration rates. Genetic Ne was much larger than demographic Ne, probably due to a greater effect of immigration on genetic than demographic processes in local populations. Moreover, although estimates of genetic Ne seemed to track Nc quite well, the genetic Ne‐estimates were often larger than Nc within populations. Estimates of genetic Ne for the metapopulation were however within the expected range (<Nc). Our results suggest that in fragmented populations, even low levels of gene flow may have important consequences for the interpretation of genetic estimates of Ne. Consequently, further studies are needed to understand how Ne estimated in local populations or the total metapopulation relates to actual rates of genetic drift and inbreeding.  相似文献   

7.
8.
9.
Chimpanzees used for biomedical research must be bred in captivity because of restrictions on importation. Because they are large and expensive animals, population sizes at breeding facilities are limited. This implies that inbreeding at some level is inevitable and that genetic management techniques should be employed to minimize matings between related individuals. The purpose of this paper is to consider the genetic history of the chimpanzee colony at the Southwest Foundation for Biomedical Research (SFBR) and to suggest ways in which genetic variability may be affected by management schemes. A total of 339 chimpanzees resided at SFBR between January, 1980, and January, 1990. Although only one mating between related individuals has occurred so far, the average level of kinship in the colony and between potential breeders is increasing. Population structure techniques were employed to assess the mating patterns which have occurred and to explore the degree of change in the characteristics of potential mates. A “gene dropping” simulation method was used to predict expected levels of heterozygosity and strategies for maintaining variability by increasing the breeding portion of the population were evaluated using a simulation approach. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Population viability has often been assessed by census of reproducing adults. Recently this method has been called into question and estimation of the effective population size (Ne) proposed as a complementary method to determine population health. We examined genetic diversity in five populations of chinook salmon (Oncorhynchus tshawytscha) from the upper Fraser River watershed (British Columbia, Canada) at 11 microsatellite loci over 20 years using DNA extracted from archived scale samples. We tested for changes in genetic diversity, calculated the ratio of the number of alleles to the range in allele size to give the statistic M, calculated Ne from the temporal change in allele frequency, used the maximum likelihood method to calculate effective population size (NeM), calculated the harmonic mean of population size, and compared these statistics to annual census estimates. Over the last two decades population size has increased in all five populations of chinook examined; however, Ne calculated for each population was low (81-691) and decreasing over the time interval measured. Values of NeM were low, but substantially higher than Ne calculated using the temporal method. The calculated values for M were generally low (M < 0.70), indicating recent population reductions for all five populations. Large-scale historic barriers to migration and development activities do not appear to account for the low values of Ne; however, available spawning area is positively correlated with Ne. Both Ne and M estimates indicate that these populations are potentially susceptible to inbreeding effects and may lack the ability to respond adaptively to stochastic events. Our findings question the practice of relying exclusively on census estimates for interpreting population health and show the importance of determining genetic diversity within populations.  相似文献   

11.
Focal animal instantaneous sampling of adult male and female chimpanzee positional behavior was conducted during a 7-month study in the Tai Forest, Ivory Coast, in order to determine whether there are sex differences in the locomotion, posture, substrate use, and height preference of sexually dimorphic adult chimpanzees, and if so, whether these differences support predictions based on body size differences. Results indicate that as predicted, adult male and female chimpanzees differ in their arboreal locomotor behavior, with the larger males using less quadrupedalism and more climbing, scrambling, and aided bipedalism than females during feeding locomotion. There is a sex difference in height preference as well, with female chimpanzees consistently using more arboreal behavior than males, primarily during resting. Although it has been previously demonstrated that separate primate species of differing body size differ in locomotor and postural activities (Fleagle and Mittermeier, 1980; Crompton, 1984), this study clearly demonstrates that body size differences within a species can also be correlated with differences in locomotor behavior. These findings may influence how we interpret sex differences in body size of extinct species. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Effective population size is a fundamental parameter in population genetics, evolutionary biology, and conservation biology, yet its estimation can be fraught with difficulties. Several methods to estimate Ne from genetic data have been developed that take advantage of various approaches for inferring Ne. The ability of these methods to accurately estimate Ne, however, has not been comprehensively examined. In this study, we employ seven of the most cited methods for estimating Ne from genetic data (Colony2, CoNe, Estim, MLNe, ONeSAMP, TMVP, and NeEstimator including LDNe) across simulated datasets with populations experiencing migration or no migration. The simulated population demographies are an isolated population with no immigration, an island model metapopulation with a sink population receiving immigrants, and an isolation by distance stepping stone model of populations. We find considerable variance in performance of these methods, both within and across demographic scenarios, with some methods performing very poorly. The most accurate estimates of Ne can be obtained by using LDNe, MLNe, or TMVP; however each of these approaches is outperformed by another in a differing demographic scenario. Knowledge of the approximate demography of population as well as the availability of temporal data largely improves Ne estimates.  相似文献   

13.
Heavy fishing and other anthropogenic influences can have profound impact on a species' resilience to harvesting. Besides the decrease in the census and effective population size, strong declines in mature adults and recruiting individuals may lead to almost irreversible genetic changes in life-history traits. Here, we investigated the evolution of genetic diversity and effective population size in the heavily exploited sole (Solea solea), through the analysis of historical DNA from a collection of 1379 sole otoliths dating back from 1957. Despite documented shifts in life-history traits, neutral genetic diversity inferred from 11 microsatellite markers showed a remarkable stability over a period of 50 years of heavy fishing. Using simulations and corrections for fisheries induced demographic variation, both single-sample estimates and temporal estimates of effective population size (N(e) ) were always higher than 1000, suggesting that despite the severe census size decrease over a 50-year period of harvesting, genetic drift is probably not strong enough to significantly decrease the neutral diversity of this species in the North Sea. However, the inferred ratio of effective population size to the census size (N(e) /N(c) ) appears very small (10(-5) ), suggesting that overall only a low proportion of adults contribute to the next generation. The high N(e) level together with the low N(e) /N(c) ratio is probably caused by a combination of an equalized reproductive output of younger cohorts, a decrease in generation time and a large variance in reproductive success typical for marine species. Because strong evolutionary changes in age and size at first maturation have been observed for sole, changes in adaptive genetic variation should be further monitored to detect the evolutionary consequences of human-induced selection.  相似文献   

14.
DNA fingerprinting probes are cloned sequences which simultaneously detect a large number of similar hypervariable loci in the target DNA. The resulting highly polymorphic pattern visualized on an autoradiograph allows resolution of questions concerning individual identification and parentage. M13 bacteriophage has been used as a DNA fingerprinting probe for paternity ascertainment among captive chimpanzees housed in multi-male groups as part of the National Chimpanzee Breeding and Research Program. In 31 cases of unknown paternity where DNA samples for mother, offspring, and all potential sires were available, DNA fingerprinting with M13 resulted in the unambiguous assignment of paternity for all 31 infants. Knowledge of pedigrees among the captive-born animals is used to address several issues important in the genetic management of captive breeding colonies, including estimation of effective population size and of the rate of decline in genetic variability, variance in male and female reproduction, and the effect of social dominance on male reproductive success. Our analysis demonstrates the beneficial effects of genetic management by comparing the managed dedicated cohort to the Bastrop colony as a whole.  相似文献   

15.
Currently two methods, instantaneous and locomotor bout sampling, are used most commonly in studies of locomotor behavior. To date, no study has addressed how comparable the results of the two methods are. This paper considers whether different sampling methods of locomotor behavior produce different results. Continuous locomotor bout and instantaneous sampling were carried out simultaneously on each focal animal during a seven month study of chimpanzee positional behavior in the Tai Forest of the Ivory Coast. Results provide two independent sets of data which describe the same events. Results indicate that as locomotor bouts are frequently presented (the percentage of bouts spent in an activity), they overrepresent the frequencies of activities that occur relatively often, but for short distances, and underrepresent activities that have a relatively large mean distance per bout. However, when bouts are weighted with distance, as originally defined by Fleagle (1976b), there are no significant differences in the results obtained by the two methods. Both provide similar results for the frequencies of locomotor activities, frequency of substrate use, and the relationship between substrate and locomotor activity. The advantage of instantaneous sampling is that because it is done at regular intervals, it can easily be carried out in conjunction with sampling other behavioral and ecological data. The advantages of locomotor bout sampling are that it permits the sampling of rare or brief locomotor events and allows for an analysis of sequences of locomotor activities. This paper demonstrates that the two methods can be conducted simultaneously and thus provide the richest return from which the effect of environment and morphology on locomotion can be addressed.  相似文献   

16.
The amount of genetic variability at neutral marker loci is expected to decrease, and the degree of genetic differentiation among populations to increase, as a negative function of effective population size. We assessed the patterns of genetic variability and differentiation at seven microsatellite loci in the common frog (Rana temporaria) in a hierarchical sampling scheme involving three regions (208-885 km apart), three subregions within regions and nine populations (5-20 km apart) within subregions, and related the variability and differentiation estimates to variation in local population size estimates. Genetic variability within local populations decreased significantly with increasing latitude, as well as with decreasing population size and regional site occupancy (proportion of censured localities occupied). The positive relationship between population size and genetic variability estimates was evident also when the effect of latitude (cf. colonization history) was accounted for. Significant genetic differentiation was found at all hierarchical levels, and the degree of population differentiation tended to increase with increasing latitude. Isolation by distance was evident especially at the regional sampling level, and its strength increased significantly towards the north in concordance with decreasing census and marker-based neighbourhood size estimates. These results are in line with the conjecture that the influence of current demographic factors can override the influence of historical factors on species population genetic structure. Further, the observed reductions in genetic variability and increased degree of population differentiation towards the north are in line with theoretical and empirical treatments suggesting that effective population sizes decline towards the periphery of a species' range.  相似文献   

17.
Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture–recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23–0.28 otter/km, or 1 otter/3.57–4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83–104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12–1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8–10 years post‐reintroduction, including 13–21% genetic diversity loss, 84%–87% genetic effective population size decline, and rapid divergence from the source population (F ST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non‐invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts.  相似文献   

18.
We studied genetic drift of mitochondrial DNA (mtDNA) haplotype frequencies in a natural population of red drum (Sciaenops ocellatus) from the northern Gulf of Mexico (Gulf). The amount of genetic drift observed across temporally adjacent year classes (1986–89) was used to estimate variance effective (female) population size (Nef). Nef was estimated to be 14 308 and the ratio of female effective size to adult female census size was approximately 0.004, which is among the lowest value reported for vertebrate animals. Low effective size relative to census size among red drum in the northern Gulf may result from yearly fluctuations in the number of breeding females, high variance in female reproductive success, or both. Despite low genetic effective size relative to census size, the genetic effective population size of red drum in the northern Gulf appears sufficiently large to preclude potentially deleterious effects of inbreeding.  相似文献   

19.
The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains. We genotyped 510 bears using 20 microsatellite loci and determined their age. The samples were organized into cohorts with regard to the year when the animals were born and yearly samples with age categories for every year when they were alive. We used the Estimator by Parentage Assignment (EPA) to directly estimate both N(e) and generation interval for each yearly sample. For cohorts, we estimated the effective number of breeders (N(b) ) using linkage disequilibrium, sibship assignment and approximate Bayesian computation methods and extrapolated these estimates to N(e) using the generation interval. The N(e) estimate by EPA is 276 (183-350 95% CI), meeting the inbreeding-avoidance criterion of N(e) > 50 but short of the long-term minimum viable population goal of N(e) > 500. The results obtained by the other methods are highly consistent with this result, and all indicate a rapid increase in N(e) probably in the late 1990s and early 2000s. The new single-sample approaches to the estimation of N(e) provide efficient means for including N(e) in monitoring frameworks and will be of great importance for future management and conservation.  相似文献   

20.
Scat (faeces) decay rate estimates are used to calculate animal species abundance and density. For African great apes, this has been measured only for Gorilla; chimpanzee scats are assumed to decay at a faster rate due to lower fibre content. We provide the first systematic measure of scat decay rate duration for Pan troglodytes schweinfurthii, in Kanyawara, Kibale National Park, Uganda. We used two methods: (1) multiple visits to obtain prospective decay rates (PDR) (N = 96 scats) and (2) a novel approach of time‐lapse photography (TLP) (N = 17 scats). Most of the visited scats (67%) decayed in ≤24 hr, and median decay rate duration from photographic documentation was 18 hr. Using regression analyses, we tested 11 covariables to determine predictors for decay rate duration. Greater volume of scat and reduced levels of diurnal dung beetle activity were positively associated with longer decay rate duration. Given a high prevalence of dung beetle activity (88% of scats), particularly within 3 hr post‐defaecation, we suggest the use of the alternative term, disappearance rate of scats. With a rapid disappearance rate, scat count surveys of unhabituated chimpanzees are challenging; further work is then needed for Pan spp. to determine spatial and temporal differences at intra‐ and inter‐species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号