首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The present study investigated the prevalence and risk factors for Metabolic syndrome. We evaluated the association between single nucleotide polymorphisms (SNPs) in the apolipoprotein APOA1/C3/A4/A5 gene cluster and the MetS risk and analyzed the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS.

Methods

A study on the prevalence and risk factors for MetS was conducted using data from a large cross-sectional survey representative of the population of Jilin Province situated in northeastern China. A total of 16,831 participations were randomly chosen by multistage stratified cluster sampling of residents aged from 18 to 79 years in all nine administrative areas of the province. Environmental factors associated with MetS were examined using univariate and multivariate logistic regression analyses based on the weighted sample data. A sub-sample of 1813 survey subjects who met the criteria for MetS patients and 2037 controls from this case-control study were used to evaluate the association between SNPs and MetS risk. Genomic DNA was extracted from peripheral blood lymphocytes, and SNP genotyping was determined by MALDI-TOF-MS. The associations between SNPs and MetS were examined using a case-control study design. The interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS were assessed using multivariate logistic regression analysis.

Results

The overall adjusted prevalence of MetS was 32.86% in Jilin province. The prevalence of MetS in men was 36.64%, which was significantly higher than the prevalence in women (29.66%). MetS was more common in urban areas (33.86%) than in rural areas (31.80%). The prevalence of MetS significantly increased with age (OR = 8.621, 95%CI = 6.594–11.272). Mental labor (OR = 1.098, 95%CI = 1.008–1.195), current smoking (OR = 1.259, 95%CI = 1.108–1.429), excess salt intake (OR = 1.252, 95%CI = 1.149–1.363), and a fruit and dairy intake less than 2 servings a week were positively associated with MetS (P<0.05). A family history of diabetes (OR = 1.630, 95%CI = 1.484–1.791), cardiovascular disease or cerebral diseases (OR = 1.297, 95%CI = 1.211–1.389) was associated with MetS. APOA1 rs670, APOA5 rs662799 and rs651821 revealed significant differences in genotype distributions between the MetS patients and control subjects. The minor alleles of APOA1 rs670, APOA5 rs662799 and rs651821, and APOA5 rs2075291 were associated with MetS (P<0.0016). APOA1 rs5072 and APOC3 rs5128, APOA5 rs651821 and rs662799 were in strong linkage disequilibrium to each other with r2 greater than 0.8. Five haplotypes were associated with an increased risk of MetS (OR = 1.23, 1.58, 1.80, 1.90, and 1.98). When we investigated the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster gene polymorphisms, we found that APOA5 rs662799 had interactions with tobacco use and alcohol consumption (PGE<0.05).

Conclusions

There was a high prevalence of MetS in the northeast of China. Male gender, increasing age, mental labor, family history of diabetes, cardiovascular disease or cerebral diseases, current smoking, excess salt intake, fruit and dairy intake less than 2 servings a week, and drinking were associated with MetS. The APOA1/C3/A4/A5 gene cluster was associated with MetS in the Han Chinese. APOA5 rs662799 had interactions with the environmental factors associated with MetS.  相似文献   

2.
Objective: To assess the relationship between high‐sensitivity (HS) C‐reactive protein (CRP) and metabolic syndrome (MetS) or atherosclerosis and to assess effects of strict metabolic control on the degree of inflammation and MetS in patients with type 2 diabetes. Research Methods and Procedures: Four hundred thirteen patients with diabetes were enrolled in the cross‐sectional study. Of these 413 patients, 161 patients were further admitted for 2.4 ± 0.4 weeks (mean ± SD) to investigate the change in HS‐CRP or other parameters under strict metabolic control. Results: Log‐transformed HS‐CRP value (log HS‐CRP) was strongly correlated with BMI (r = 0.448, p < 0.01). Log HS‐CRP was also correlated with the presence of MetS or each component of MetS. Furthermore, a positive significant trend in HS‐CRP levels was shown with an increasing number of MetS components (p < 0.05). Log HS‐CRP showed a significant positive correlation with carotid artery intima‐media thickness (IMT) (r = 0.152, p < 0.01). In multiple step‐wise regression analysis, BMI, hemoglobin A1c, right IMT, duration of diabetes, and triglyceride were selected as explanatory variables for log HS‐CRP (R2 = 0.412). Under strict metabolic control, HS‐CRP was significantly (p < 0.01) lower, together with lower levels of other markers for MetS. The change in HS‐CRP was significantly correlated with the change in BMI (r = 0.161, p = 0.04). Discussion: In subjects with type 2 diabetes, HS‐CRP levels are related to MetS and subclinical atherosclerosis. Strict weight management and metabolic control were associated with a reduction in HS‐CRP levels, and changes in HS‐CRP were related to changes in weight, supporting the hypothesis that lifestyle modification reduces inflammation and the risk of CHD.  相似文献   

3.
The objective of this study was to examine the effect of genetic variants in fat mass and obesity associated (FTO) gene on metabolic syndrome (MetS). A systematic literature search was performed and random-effects meta-analysis was used to evaluate genetic variants in FTO with MetS. A gene-based analysis was conducted to investigate the cumulative effects of genetic polymorphisms in FTO. A total of 18 studies from 13 published papers were included in our analysis. Random-effects meta-analysis yielded an estimated odds ratio of 1.19 (95% CI 1.12–1.27; P = 1.38 × 10−7) for rs9939609, 1.19 (95% CI 1.05–1.35; P = 0.008) for rs8050136, and 1.89 (95% CI 1.20–2.96; P = 0.006) for rs1421085. The gene-based analysis indicated that FTO is strongly associated with MetS (P < 10−5). This association remains after excluding rs9939609, a SNP that was frequently reported to have strong association with obesity and MetS. In this study, we concluded that the FTO gene may play a critical role in leading to MetS. Targeting this gene may provide novel therapeutic strategies for the prevention and treatment of metabolic syndrome.  相似文献   

4.
Chen XD  Yang YJ  Li SY  Peng QQ  Zheng LJ  Jin L  Wang XF 《PloS one》2012,7(3):e34229

Background

Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) is thought to be an important candidate gene of diabetes. Several single nucleotide polymorphisms (SNPs) in a 40-kb linkage disequilibrium (LD) block in its intron 15 have been identified to be associated with diabetes in East Asian populations in recent genome-wide association studies. The aim of this study was to investigate whether KCNQ1 polymorphisms influence the levels of the metabolic phenotypes in general Chinese populations.

Methodology/Principal Findings

We investigated the associations of two SNPs (rs2237892 and rs2237895) in the aforementioned 40-kb LD block, a missense variant rs12720449 (P448R) in exon 10, and a synonymous variant rs1057128 (S546S) in exon 13 with metabolic phenotypes in a Uyghur population (n = 478) and replicated these associations in a Han population (n = 2,485). We found that rs2237892-T allele was significantly associated with decreased triglyceride levels (pcombined = 0.001). The minor G allele of the rs12720449, with sharp difference of the allelic frequency between European and East Asian populations (0.2% versus 14%, respectively), was associated with a lower triglyceride levels than G allele in Uyghur subjects (p = 0.004), in Han subjects (p = 0.052), and in subjects of meta-analysis (pcombined = 0.001). Moreover, the minor A allele of the rs1057128 was also associated with decreased triglyceride levels in meta-analysis (pcombined = 0.010).

Conclusions

To the best of our knowledge, this is the first report associating a missense mutation of KCNQ1, rs12720449, with triglyceride levels. Rs2237892, representing the 40-kb LD block, is also associated with triglyceride levels in Han population. Further studies are required to replicate these findings in other East Asian populations.  相似文献   

5.

Objective:

There is a lack of data on the progression from a healthy obese phenotype toward an unhealthy obese phenotype and the development of metabolic syndrome (MetS). Our aim was to assess the development of MetS 3 years after screening in centrally obese individuals with a healthy obese phenotype and to evaluate the usefulness of repeated screening.

Design and Methods:

Eighty‐eight individuals (mean age 47 years, 88% female) with central obesity as their only MetS component (ATP III criteria) at baseline screening were re‐evaluated for MetS status after 3 years.

Results:

At follow‐up, the cardiometabolic risk profile in centrally obese individuals with a healthy phenotype showed a tendency toward deterioration. Thirty‐two percent developed at least one additional MetS component, 7% had developed MetS. Nobody had developed type 2 diabetes. An increased triglyceride level (n = 16) and an increased blood pressure (n = 18) were the components most often present at follow‐up. The people developing additional MetS components had a lower education level compared with the group that preserved the healthy centrally obese phenotype (80 vs. 71% lower educated, P = 0.35). They also had slightly worse baseline levels of the risk factors.

Conclusion:

The number of centrally obese individuals developing an unhealthy phenotype in this relatively short follow‐up period emphasizes the need for a regular surveillance of cardiometabolic parameters in centrally obese individuals. However, it is questionable whether a repeated screening for type 2 diabetes every 3 years, as recommended by the American Diabetes Association, in this category of patients is appropriate.  相似文献   

6.
Genetic studies of plasma TG levels have identified associations with multiple candidate loci on chromosome11q23.3, which harbors a number of genes, including BUD13, ZNF259, and APOA5-A4-C3-A1. This study aimed to examine whether these multiple candidate genes on the 11q23.3 regions exert independent effects on TG levels or whether their effects are confounded by linkage disequilibrium (LD). We performed a genome-wide association study and consequent fine-mapping analyses on TG levels in two Korean population-based cohorts: the Korea Association Resource study (n = 8,223) and the Healthy Twin study (n = 1,735). A total of 301 loci reached genome-wide significance level in pooled analysis, including 10 SNPs with weak LD (r2 < 0.06) clustered on 11q23.3: ApoA5 (rs651821, rs2075291); ZNF259 (rs964184, rs603446); BUD13 (rs11216126); Apoa4 (rs7396851); SIK3 (rs12292858); PCSK7 (rs199890178); PAFAH1B2 (rs12420127), and SIDT2 (rs2269399). When the inter-dependence between alleles was examined using conditional models, five loci on BUD13, ZNF259, and ApoA5 showed possible independent associations. A haplotype analysis using five SNPs revealed both hyper- and hypotriglyceridemic haplotypes, which are relatively common in Koreans (haplotype frequency 0.08–0.22). Our findings suggest the presence of multiple functional loci on 11q23.3, which might exert their effects on plasma TG level independently or through complex interactions between functional loci.  相似文献   

7.
The single nucleotide polymorphisms (SNPs) in the BUD13 homolog (BUD13) and zinc finger protein 259 (ZNF259) genes have been associated with one or more serum lipid traits in the European populations. However, little is known about such association in the Chinese populations. Our objectives were to determine the association of the BUD13/ZNF259 SNPs and their haplotypes with hypercholesterolaemia (HCH)/hypertriglyceridaemia (HTG) and to identify the possible gene–gene interactions among these SNPs. Genotyping of 6 SNPs was performed in 634 hyperlipidaemic and 547 normolipidaemic participants. The ZNF259 rs2075290, ZNF259 rs964184 and BUD13 rs10790162 SNPs were significantly associated with serum lipid levels in both HCH and non‐HCH populations (P < 0.008–0.001). On single locus analysis, only BUD13 rs10790162 was associated with HCH (OR: 2.23, 95% CI: 1.05, 4.75, P = 0.015). The G‐G‐A‐A‐C‐C haplotype, carrying rs964184‐G‐allele, was associated with increased risk of HCH (OR: 1.35, 95% CI: 1.10, 1.66, P = 0.005) and HTG (OR: 1.75, 95% CI: 1.39, 2.21, P = 0.000). The A‐C‐G‐G‐C‐C and A‐C‐A‐G‐T‐C haplotypes, carrying rs964184‐C‐allele, were associated with reduced risk of HCH (OR: 0.77, 95% CI: 0.61, 0.99, P = 0.039 and OR: 0.66, 95% CI: 0.47, 0.94, P = 0.021 respectively). On multifactor dimensionality reduction analyses, the two‐ to three‐locus models showed a significant association with HCH and HTG (P < 0.01–0.001). The BUD13/ZNF259 SNPs, which were significant in the European populations, are also replicable in the Southern Chinese population. Moreover, inter‐locus interactions may exist among these SNPs. However, further functional studies are required to clarify how these SNPs and genes actually affect the serum lipid levels.  相似文献   

8.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Recently, the influence that metabolic syndrome (MetS), hormonal alterations and inflammation might have on prostate cancer (PCa) risk has been a subject of controversial debate. Herein, we aimed to investigate the association between MetS‐components, C‐reactive protein (CRP) and testosterone levels, and the risk of clinically significant PCa (Sig‐PCa) at the time of prostate biopsy. For that, men scheduled for transrectal ultrasound guided biopsy of the prostate were studied. Clinical, laboratory parameters and criteria for MetS characterization just before the biopsy were collected. A total of 524 patients were analysed, being 195 (37.2%) subsequently diagnosed with PCa and 240 (45.8%) meet the diagnostic criteria for MetS. Among patients with PCa, MetS‐diagnosis was present in 94 (48.2%). Remarkably, a higher risk of Sig‐PCa was associated to MetS, greater number of MetS‐components and higher CRP levels (odds‐ratio: 1.83, 1.30 and 2.00, respectively; P < 0.05). Moreover, higher circulating CRP levels were also associated with a more aggressive Gleason score in PCa patients. Altogether, our data reveal a clear association between the presence of MetS, a greater number of MetS‐components or CRP levels >2.5 mg/L with an increased Sig‐PCa diagnosis and/or with aggressive features, suggesting that MetS and/or CRP levels might influence PCa pathophysiology.  相似文献   

10.
Apolipoprotein A‐V (apo A‐V) exerts a potent triglyceride (TG)‐lowering effect through enhanced intravascular TG‐hydrolysis with increased uptake of TG‐derived free fatty acids into muscle and adipose tissue. Genetic variants in the APOA5 gene were strongly associated with plasma TG concentrations. The aim of this study was to examine whether APOA5 genetic variation was associated with obesity. We genotyped the missense c.553 G>T polymorphism (p.G185C) in the APOA5 gene in 1,085 Chinese (333 obese subjects and 752 nonobese controls). We analyzed the association between the c.553 G>T polymorphism and obesity and related metabolic phenotypes. The T allele at the c.553 G>T polymorphism was associated with higher plasma TG concentrations. Each additional T allele was associated with an increased TG concentration of 53.5 mg/dl (95% confidence interval (CI) 29.6–76.0, P < 0.0001). However, the T allele was associated lower risk of obesity (odds ratio (OR), 0.48; 95% CI 0.32–0.73, P = 0.0004). Each additional copy of the T allele was associated with a BMI decrease of 0.73 kg/m2 (95% CI 0.26–1.16, P = 0.002), equivalent to 2.11 kg in a person 1.7 m tall. We may then conclude that the TG‐raising APOA5 genetic variant was associated with a decrease in BMI and reduced risk of obesity in the Chinese population.  相似文献   

11.
Apolipoprotein A5 (apoA5) has an important role in lipid metabolism, specifically for triglyceride‐rich lipoproteins. Recently, evidence has emerged for an association between genetic variability at the APOA5 locus and increased risk of obesity and metabolic syndrome. However, its mechanism of action remains to be fully elucidated. Importantly, an intracellular role of apoA5 has been indicated since apoA5 is associated with cytoplasmic lipid droplets and affects intrahepatic triglyceride accumulation, as well as affecting intravascular triglyceride metabolism. Given that adipocytes provide the largest storage depot for energy in the form of triglyceride within the lipid droplets, and play a crucial role in the development of obesity, we highlight recent findings discussing the interaction of apoA5 with adipocytes or adipose tissue, indicating that apoA5 may act as a novel regulator to modulate triglyceride storage in adipocytes. We review the association of APOA5 gene polymorphisms with obesity and metabolic syndrome, and propose potential mechanisms by which apoA5 may increase susceptibility to these conditions. This review provides new insights into the physiological role of apoA5 and identifies a potential therapeutic target for obesity and associated disorders.  相似文献   

12.

Background/Aim

Recent genome-wide association studies have identified several loci influencing lipid levels. The present study focused on the triglycerides (TG)-associated locus, the APOA4-APOA5-ZNF259-BUD13 gene cluster on chromosome 11, to explore the role of genetic variants in this gene cluster in the development of increasing TG levels and coronary heart disease (CHD).

Methodology/Principal Findings

Six single nucleotide polymorphisms (SNPs), rs4417316, rs651821, rs6589566, rs7396835, rs964184 and rs17119975, in the APOA4-APOA5-ZNF259-BUD13 gene cluster were selected and genotyped in 5374 healthy Chinese subjects. There were strong significant associations between the six SNPs and TG levels (P<1.0×10−8). Moreover, a weighted genotype score was found to be associated with TG levels (P = 3.28×10−13). The frequencies of three common haplotypes were observed to be significantly different between the high TG group and the low TG group (P<0.05). However, no significant effects were found for the SNPs regarding susceptibility to CHD in the Chinese case-control populations.

Conclusions/Significance

This study highlights the genotypes, genotype scores and haplotypes of the APOA4-APOA5-ZNF259-BUD13 gene cluster that were associated with TG levels in a Chinese population; however, the genetic variants in this gene cluster did not increase the risk of CHD in the Chinese population.  相似文献   

13.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

14.
There is a complex association among genetic, metabolic, and environmental factors in determining the risk of metabolic syndrome (MetS). The aim of this study was to investigate the role of the association between the dietary intake of iron, copper, zinc, manganese, selenium, and iodine (assessed by 24 recall) with vascular endothelial growth factor variants (rs6921438, rs4416670, rs6993770, and rs10738760), on the risk of MetS. Two-hundred and forty-eight individuals with MetS and 100 individuals without MetS were recruited. The dietary intake and the daily average of energy and nutrient intake were obtained by a questionnaire and quantified using Diet Plan 6 software. DNA was extracted from EDTA anticoagulated whole blood. The SNPs were assessed using using a Sequenom iPLEX Gold assay. Data analysis was undertaken using the Student t test, χ2 test and logistic regression using SPSS 11.5 software. There was a significant association between low dietary iron intake and rs6993770 (β = .10, P < .05), and a low dietary zinc and a high manganese intake with rs6921438 in relation to the presence of MetS (β = −.17, P < .05, β = −.30, P < .05, respectively). Our data showed the association of rs6993770 with iron intake and rs6921438 with zinc and manganese intake, indicating further investigation in a larger population to evaluate their values.  相似文献   

15.
16.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome‐wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European‐Americans (EA; 2927 cases) and 3132 African‐Americans (AA: 1315 cases) participating in the family‐based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome‐wide significant (GWS; P < 5E‐08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion‐deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans‐ancestral meta‐analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward‐related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non‐European samples with distinct patterns of substance use may lead to the identification of novel ancestry‐specific genetic markers of risk.  相似文献   

17.

Objective:

Anti‐oxidative properties of high density lipoproteins (HDL) are relevant for atheroprotection. HDL carry serum amyloid A (SAA), which may impair HDL functionality. We questioned whether HDL anti‐oxidative capacity is determined by SAA.

Design and Methods:

Relationships of HDL anti‐oxidative capacity (% inhibition of low density lipoprotein oxidation in vitro) with SAA were determined in 54 non‐diabetic subjects without metabolic syndrome (MetS) and 68 subjects with MetS (including 51 subjects with Type 2 diabetes mellitus).

Results:

SAA levels were higher in MetS subjects, coinciding higher high sensitive C‐reactive protein (hs‐CRP) and lower HDL cholesterol and apolipoprotein (apo) A‐I levels (P<0.001 for all). HDL anti‐oxidative capacity was not different between subjects with and without MetS (P=0.76), but the HDL anti‐oxidation index (HDL anti‐oxidative capacity multiplied by individual HDL cholesterol concentrations), as a measure of global anti‐oxidative functionality of HDL, was lower in Mets subjects (P<0.001). HDL anti‐oxidative capacity was correlated inversely with SAA levels in subjects without MetS (r=‐0.286, P=0.036). Notably, this relationship was independent of HDL cholesterol or apoA‐I (P<0.05 for both). In contrast, no relation of HDL anti‐oxidative capacity with SAA was observed in MetS subjects (r=0.032, P=0.80). The relationship of SAA with HDL anti‐oxidative capacity was different in subjects with MetS compared to subjects without MetS (P=0.039 for the interaction between the presence of MetS and SAA on HDL anti‐oxidative capacity) taking age and diabetes status into account.

Conclusion:

Higher SAA levels may impair HDL anti‐oxidative functionality. The relationship of this physiologically relevant HDL functionality measure with circulating SAA levels is apparently disturbed in metabolic syndrome.  相似文献   

18.
The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral‐bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual 13C and 15N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched 13C and 15N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance 13C–CO2 and 15N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in 13C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral‐associated organic matter.  相似文献   

19.
20.
The case‐control study was designed to investigate the genetic effects of interferon‐gamma (IFN‐γ) rs2069727 and rs1861494 polymorphisms on ankylosing spondylitis (AS) susceptibility in a Chinese Han population. Blood samples were collected from 108 AS patients and 110 healthy controls. IFN‐γ polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP). Hardy‐Weinberg equilibrium (HWE) test was performed in control group. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using chi‐square test to evaluate the association between AS susceptibility and IFN‐γ polymorphisms, and the results were adjusted by logistic regressive analysis. The frequency of rs2069727 CC genotype was much higher in cases than that in controls, suggested its significant association with increased AS risk (adjusted OR = 5.899, 95% CI = 1.563‐22.261; P = .009). In addition, C allele also showed close association with increased risk of AS (adjusted OR = 2.052, 95% CI = 1.286‐1.704, P  = 0 .003). While the genotype and allele frequencies of IFN‐γ rs1861494 polymorphism were not significantly different between patients and controls (P  > 0.05 for all), IFN‐γ rs2069727 polymorphism is significantly associated with increased AS risk in a Chinese Han Population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号