首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consortium-GB (Galactomyces geotrichum MTCC 1360 and Bacillus sp. VUS) exhibited 100% decolorization ability with the dye Brown 3REL within 2 h at shaking condition with optima of pH 7 and at 50°C. However, G. geotrichum MTCC 1360 showed 39% decolorization within 24 h and Bacillus sp. VUS took 5 h for 100% decolorization, when incubated individually. Additional carbon and nitrogen sources like, starch, peptone, and urea were found to enhance decolorization. Induction in lignin peroxidase, tyrosinase, and riboflavin reductase was observed in consortium as that of individual organisms. GCMS identification showed different metabolites formed using consortium (2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-urea and 2-(6,8-dichloro-quinazolin-4yloxy)-acetyl-formamide) and Bacillus sp. VUS (6,8-dichloro-4 methoxy-quinazoline) after 2 h of incubation with Brown 3REL. G. geotrichum MTCC 1360 showed minor modifications in structure of Brown 3REL. Phytotoxicity revealed non toxic nature of metabolites. This consortium-GB was also able to decolorize various industrial dyes.  相似文献   

2.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

3.
Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33   总被引:1,自引:0,他引:1  
Aims: To isolate and characterize bacteria capable of degrading nicotine from the rhizospheric soil of a tobacco plant and to use them to degrade the nicotine in tobacco solid waste. Methods and Results: A bacterium, strain S33, was newly isolated from the rhizospheric soil of a tobacco plant, and identified as Agrobacterium sp. based on morphology, physiological tests, Biolog MicroLog3 4·20 system and 16S rRNA gene sequence. Using nicotine as the sole source of carbon and nitrogen in the medium, it grew optimally with 1·0 g l?1 of nicotine at 30°C and pH 7·0, and nicotine was completely degraded within 6 h. The resting cells prepared from the glucose‐ammonium medium or LB medium could not degrade nicotine within 10 h, while those prepared from the nicotine medium could completely degrade 3 g l?1 of nicotine in 1·5 h at a maximal rate of 1·23 g nicotine h?1 g?1 dry cell. Using the medium containing nicotine, glucose and ammonium simultaneously to cultivate strain S33, the resting cells could degrade 98·87% of nicotine in tobacco solid waste with the concentration as 30 mg nicotine g?1 dry weight tobacco solid waste within 7 h at a maximal rate of 0·46 g nicotine h?1 g?1 dry cell. Conclusions: This is the first report that Agrobacterium sp. has the ability to degrade nicotine. Agrobacterium sp. S33 could use nicotine as the sole source of carbon and nitrogen. The use of resting cells of the strain S33 prepared from the nicotine–glucose–ammonium medium was an effective method to degrade nicotine and detoxify tobacco solid waste. Significance and Impact of the Study: Nicotine in tobacco wastes is both toxic and harmful to human health and the environment. This study showed that Agrobacterium sp. S33 may be suitable for the disposal of tobacco wastes and reducing the nicotine content in tobacco leaves.  相似文献   

4.
A number of aerobic species capable of decolorizing some of the dyes in a textile mill effluent were isolated. One of the isolates was able to decolorize Terasil black dye under aerobic conditions in the presence of an exogenous carbon source after 5 days. Glucose or starch (%1 ea) are essential for decolorization but the process proceeds faster in the presence of 0.5% yeast extract. Results of the BOD(5) show that the untreated effluent samples have a low BOD value, whereas treated samples show an initial increase in BOD up to 15 days followed by a decrease after 20 days. FT-IR and GC-MS data also reveal that the initial components in the untreated effluent disappear after 20 days of treatment, confirming biodegradation of the dye. Phytotoxicity tests on the untreated effluent samples using the seeds of Lens orientalis, Triticum aestivum, and Triticum boeoticum indicate that the first one is the most sensitive while the last one is the most resistant. On the other hand the treated effluent allows 90% germination in Triticum boeoticum seeds and 100% germination in the other two.  相似文献   

5.
The diazo reactive dye Navy blue HE2R (50 mg/L) was decolorized up to 91.2% within 48 h at static condition by the Exiguobacterium sp. isolated from the dyestuff contaminated soil, collected from the textile industrial area Solapur, India. It showed ability to decolorize seven different reactive textile dyes. Maximum decolorization was observed at 30°C and pH 7. The presence and significant increase in the activity of enzymes lignin peroxidase, laccase, and azoreductase indicated prominent role of these enzymes in the decolorization of Navy blue HE2R. The degradation metabolites were analyzed by UV-Vis spectroscopy, TLC, HPLC, and FTIR spectroscopy. A possible pathway for biodegradation of this diazo reactive dye was proposed with the help of GC-MS analysis. The phytotoxicity studies confirmed the environmentally safe nature of degradation products.  相似文献   

6.
Biodegradation of exploded cotton stalk by Bacillus sp.   总被引:2,自引:0,他引:2  
Zheng L  Han X  Du Y 《Biotechnology letters》2003,25(20):1747-1750
The exploded bast, branch and stem of cotton stalk were degraded by alkalophilic Bacillus NT-19, with weight losses of 24%, 20% and 14%, respectively, after 14 d. Compared with a white-rot fungus (Phanerochaete chrysosporium), Bacillus NT-19 preferentially degraded the non-cellulose components of cotton stem. The relative degree of crystallinity of bast fibers decreased by 8% and the middle lamella was partially removed from the fiber bundle by the Bacillus.  相似文献   

7.
Peroxidase was purified by an ion exchange chromatography followed by gel filtration chromatography from dye degrading Bacillus sp. strain VUS. The optimum pH and temperature of the enzyme activity was 3.0 and 65°C, respectively. This enzyme showed more activity with n-propanol than other substrates tested viz. xylidine, 3-(3,4-dihydroxy phenyl) Lalanine (L-DOPA), hydroxyquinone, ethanol, indole, and veratrole. Km value of the enzyme was 0.076 mM towards n-propanol under standard assay conditions. Peroxidase was more active in presence of the metal ions like Li2+, Co2+, K2+, Zn2+, and Cu2+ where as it showed less activity in the presence of Ca2+ and Mn2+. Inhibitors like ethylenediamine tetraacetic acid (EDTA), glutamine, and phenylalanine inhibited the enzyme partially, while sodium azide (NaN3) completely. The crude as well as the purified peroxidase was able to decolourize different industrial dyes. This enzyme decolourized various textile dyes and enhanced percent decolourization in the presence of redox mediators. Aniline was the most effective redox mediator than other mediators tested. Gas chromatography-Mass spectrometry (GC-MS) confirmed the formation of 7-Acetylamino-4-hydroxy-naphthalene-2-sulphonic acid as the final product of Reactive Orange 16 indicating asymmetric cleavage of the dye.  相似文献   

8.
Shan ZQ  Zhou JG  Zhou YF  Yuan HY  Lv H 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株,其中编号为QH14的菌株产酶量达648.79U/mL,纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌,命名为Bacillus sp.QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14,并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃,最适pH为9.2;55℃处理1h仍保持50%的活力;在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力,且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活,显示了该碱性木聚糖酶较好的热稳定性和碱稳定,提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

9.
单志琼  周峻岗  周宇飞  袁汉英  吕红 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株, 其中编号为QH14的菌株产酶量达648.79 U/mL, 纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌, 命名为Bacillus sp. QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14, 并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃, 最适pH为9.2; 55℃处理1h仍保持50%的活力; 在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力, 且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活, 显示了该碱性木聚糖酶较好的热稳定性和碱稳定, 提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

10.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work.  相似文献   

11.
Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp   总被引:1,自引:0,他引:1  
Benzo(a)pyrene (BaP) is a five-ring polycyclic aromatic hydrocarbon produced by the incomplete combustion of organic materials. It is one of the priority pollutants listed by the US Environmental Protection Agency. This study describes a fungal isolate that is able to biodegrade benzo(a)pyrene. The filamentous fungus, isolated from leaves of Pterocarpus macrocarpus Kurz., was identified as a Fusarium sp. (strain E033). Fusarium sp. E033 was able to survive in the presence of benzo(a)pyrene concentrations up to 1.2 mM (300 mg L(-1)). Biodegradation experiments using 0.4 mM (100 mg L(-1)) benzo(a)pyrene demonstrated that Fusarium sp. E033 was able to degrade 65-70% of the initial benzo(a)pyrene provided, and two transformation products, a dihydroxy dihydro-benzo(a)pyrene and a benzo(a)pyrene-quinone, were detected within 30 days of incubation at 32 degrees C. The factors affecting biodegradation efficiency were also investigated. While increasing aeration promoted better fungal growth and benzo(a)pyrene biodegradation, increasing the glucose concentration from 5 to 50 mM had an adverse effect on biodegradation. Ethanol and methanol, provided at 5 mM to increase benzo(a)pyrene water solubility, increased the fungal biomass yield but did not promote degradation. The Fusarium sp. E033 isolated in this study can tolerate and degrade relatively high concentrations of benzo(a)pyrene, suggesting its potential application in benzo(a)pyrene bioremediation.  相似文献   

12.
The application of microorganisms for removing crude oil pollution from contaminated sites as a type of bioremediation has long been a matter of study in scientific communities. In this study, 35 morphologically different spore-forming Bacilli were isolated from an oil-contaminated soil in Lavan Island. The objective of this study was to investigate the oil-biodegrading ability of these indigenous bacilli. Therefore, their biosurfactant production, using Du Neuy ring, and the crude oil aliphatic and aromatic content alteration after bacterial treatment, respectively, using gas chromatography and high-performance liquid chromatography, were studied. An isolate with high endurance of a wide range of temperature and pH and optimized growth at 30°C and pH 6.8 that could reduce the surface tension from 60 to 40 mN/m and cause the most alteration in aliphatic and aromatic content of crude oil was selected. Using biochemical and molecular analyses of 16SrRNA, this suitable bacterium for oil biodegradation was characterized as Bacillus cereus sp. 4.  相似文献   

13.
A bacillus sp. isolated from the sediments of a distillery mill was used for laccase production under optimized culture conditions. The distillery effluent was used as an inducer for overproduction of laccase by employing the Taguchi approach. Screening of different medium components and their effect on laccase production was studied using an M-16 orthogonal array. The formation of laccase was considerably increased by addition of 1 mM copper sulfate (51.95 U/ml), which was further enhanced by the use of different inducers. The usefulness of the Taguchi method for optimization of culture conditions was investigated with five selected factors at four levels, and it was observed that the optimized medium resulted in a 9-fold increase in extracellular laccase production compared with the control. The optimized medium composition for laccase production was dextrose (1%), tryptone (0.1%), CuSO4 (1 mM), and an inducer (distillery effluent 10% [v/v]) at pH 7, which altogether resulted in 107.32 U/ml extracellular laccase activity. Hence, the Taguchi approach proved to be a reliable tool in optimizing culture conditions and achieving the best possible combination for enhanced laccase production.  相似文献   

14.
15.
16.
In the present study, Methylobacterium sp. FD1 utilizing formaldehyde was isolated from soil. The resting cells of FD1 degraded high concentrations of formaldehyde (~2.7 M) and produced formic acid and methanol that were molar equivalents of one-half of the degraded formaldehyde. This result suggests that formaldehyde degradation by FD1 is caused by formaldehyde dismutase. The optimal temperature and pH for formaldehyde degradation by the resting cells of FD1 were 40 °C and 5–7, respectively. The lyophilized cells of FD1 also degraded high concentrations of formaldehyde. The formaldehyde degradation activity of the lyophilized cells was maintained as the initial activity at 25 °C for 287 days. These results suggest that the lyophilized cells of FD1 are useful as formaldehyde degradation materials.  相似文献   

17.
18.
A novel bacterial strain capable of decolorizing reactive textile dye Red BLI is isolated from the soil sample collected from contaminated sites of textile industry from Solapur, India. The bacterial isolate was identified as Pseudomonas sp. SUK1 on the basis of 16S rDNA analysis. The Pseudomonas sp. SUK1 decolorized Red BLI (50 mg l(-1)) 99.28% within 1h under static anoxic condition at pH range from 6.5 to 7.0 and 30 degrees C. This strain has ability to decolorize various reactive textile dyes. UV-Vis spectroscopy, FTIR and TLC analysis of samples before and after dye decolorization in culture medium confirmed decolorization of Red BLI. A significant increase in the activities of aminopyrine N-demethylase and NADH-DCIP reductase in cells obtained after decolorization indicates involvement of these enzymes in the decolorization process. Phytotoxicity testing with the seeds of Sorghum vulgare and Phaseolus mungo, showed more sensitivity towards the dye, while the products obtained after dye decolorization does not have any inhibitory effects.  相似文献   

19.
A new thermophilic strain of Bacillus SPS-0 which produces thermostable xylanases was isolated from a hot spring in Portugal. Xylanase production was 50 nkat/ml in the presence of wheat bran arabinoxylan. The temperature and pH for optimum activity were 75°C and 6–9, respectively. The hydrolysis patterns demonstrated that crude xylanases yield mainly xylose and xylobiose from xylan, whereas xylose and arabinose were produced from destarched wheat bran. An increase in xylose release was observed when SPS-0 xylanase was supplemented by a ferulic acid esterase. © Rapid Science Ltd. 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号