首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究在培养基中加入不同电子载体对丁醇发酵的影响。结果表明:添加微量的苄基紫精可以促进丁醇的产生,同时可强烈抑制丙酮的合成,丁醇体积分数由66.92%提高到82.35%。苄基紫精可促进菌株快速进入产溶剂期,发酵周期明显缩短,丁醇生产强度显著提高。7%玉米培养基中加入40 mg/L苄基紫精,丁醇产量最高达16.10 g/L,生产强度为0.37 g/(L.h),分别较对照提高10.96%和60.87%。在初始丁醇体积分数较低的条件下,苄基紫精对丁醇合成的促进作用更明显。  相似文献   

2.
提出一种可以提高和自由控制丙丁梭菌ABE发酵丙酮浓度与丙酮/丁醇比的方法。(1)通过控制糖化酶用量、反应时间和温度调节玉米培养基初始葡萄糖浓度,使发酵进入到产溶剂期后,残留葡萄糖浓度降至接近于0 g/L的水平;(2)在葡萄糖受限的条件下,诱导丙丁梭菌合成分泌糖化酶,分解寡糖,将葡萄糖维持于低浓度,进而限制梭菌胞内糖酵解途径的碳代谢和NADH生成速度。与此同时,外添乙酸形成葡萄糖/乙酸双底物环境。在能量代谢基本不受破坏、丁醇未达到抑制浓度的条件下,适度抑制丁醇生产,有效地利用外添乙酸强化丙酮合成;(3)在外添乙酸的基础上,添加适量酿酒酵母,形成丙丁梭菌/酿酒酵母混合发酵体系,提高梭菌对高丁醇浓度的耐受能力。整个发酵体系可以将丙酮浓度和丙酮/丁醇比自由控制在5~12 g/L和0.5~1.0的水平,最大丙酮浓度和丙酮/丁醇比达到11.74 g/L和1.02,并可维持丁醇浓度于10~14 g/L的正常水平,充分满足工业ABE发酵对于丙酮和丁醇产品的不同需求。  相似文献   

3.
Mao S  Luo Y  Bao G  Zhang Y  Li Y  Ma Y 《Molecular bioSystems》2011,7(5):1660-1677
The solventogenic bacterium Clostridium acetobutylicum is the most important species of Clostridium used in the fermentation industry. However, the intolerance to butanol hampers the efficient production of solvents. Butanol toxicity has been attributed to the chaotropic effect on the cell membrane, but the knowledge on the effect of butanol on membrane associated proteins is quite limited. Using 2-DE combined with MALDI-TOF MS/MS and 1-DE integrated with LC-MS/MS, 341 proteins in the membrane fractions of cell lysate were identified, thus establishing the first comprehensive membrane proteome of C. acetobutylicum. The identified proteins are mainly involved in transport, cellular membrane/wall machinery, formation of surface coat and flagella, and energy metabolism. Comparative analysis on the membrane proteomes of the wild type strain DSM 1731 and its butanol-tolerant mutant Rh8 revealed 73 differentially expressed proteins. Hierarchical clustering analysis suggested that mutant Rh8 may have evolved a more stabilized membrane structure, and have developed a cost-efficient energy metabolism strategy, to cope with the butanol challenge. This comparative membrane proteomics study, together with our previous published work on comparative cytoplasmic proteomics, allows us to obtain a systemic understanding of the effect of butanol on cellular physiology of C. acetobutylicum.  相似文献   

4.
Zhang Y  Han B  Ezeji TC 《New biotechnology》2012,29(3):345-351
The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol.  相似文献   

5.
Acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum has been extensively studied in recent years because the organism is recognized as an excellent butanol producer. A parallel bioreactor system with 48 stirred-tank bioreactors on a 12 mL scale was evaluated for batch cultivations of the strictly anaerobic, butanol-producing C. acetobutylicum ATCC 824. Continuous gassing with nitrogen gas was applied to control anaerobic conditions. Process performances of ABE batch fermentations on a milliliter scale were identical to the liter-scale stirred-tank reactor if reaction conditions were identical on the different scales (e.g., initial medium, pH, temperature, specific evaporation rates, specific power input by the stirrers). The effects of varying initial ammonia concentrations (0.1-4.4 g L(-1) ) were studied in parallel with respect to glucose consumption and butanol production of C. acetobutylicum ATCC 824 as a first application example. The highest butanol yield of 33% (mol mol(-1) ) was observed at initial ammonia concentrations of 0.5 and 1.1 g L(-1) . This is the first report on the successful application of a 48 parallel stirred-tank bioreactor system for reaction engineering studies of strictly anaerobic microorganisms at the milliliter scale.  相似文献   

6.
Two metabolic engineering tools, namely gene inactivation and gene overexpression, were employed to examine the effects of two genetic modifications on the fermentation characteristics of Clostridium acetobutylicum. Inactivation of the butyrate kinase gene (buk) was examined using strain PJC4BK, while the combined effect of buk inactivation and overexpression of the aad gene-encoding the alcohol aldehyde dehydrogense (AAD) used in butanol formation-was examined using strain PJC4BK(pTAAD). The two strains were characterized in controlled pH > or = 5.0 fermentations, and by a recently enhanced method of metabolic flux analysis. Strain PJC4BK was previously genetically characterized, and fermentation experiments at pH > or = 5.5 demonstrated good, but not exceptional, solvent-production capabilities. Here, we show that this strain is a solvent superproducer in pH > or = 5.0 fermentations producing 225 mM (16.7 g/L) of butanol, 76 mM of acetone (4.4 g/L), and 57 mM (2.6 g/L) of ethanol. Strain PJC4BK(pTAAD) produced similar amounts of butanol and acetone but 98 mM (4.5 g/L) of ethanol. Both strains overcame the 180 mM (13 g/L) butanol toxicity limit, without any selection for butanol tolerance. Work with strain PJC4BK(pTAAD) is the first reported use of dual antibiotic selection in C. acetobutylicum. One antibiotic was used for selection of strain PJC4BK while the second antibiotic selected for the pTAAD presence. Overexpression of aad from pTAAD resulted in increased ethanol production but did not increase butanol titers, thus indicating that AAD did not limit butanol production under these fermentation conditions. Metabolic flux analysis showed a decrease in butyrate formation fluxes by up to 75% and an increase in acetate formation fluxes of up to 100% during early growth. The mean specific butanol and ethanol formation fluxes increased significantly in these recombinant strains, up to 300% and 400%, respectively. Onset of solvent production occurred during the exponential-growth phase when the culture optical density was very low and when total and undissociated butyric acid levels were <1 mM. Butyrate levels were low throughout all fermentations, never exceeding 20 mM. Thus, threshold butyrate concentrations are not necessary for solvent production in these stains, suggesting the need for a new phenomenological model to explain solvent formation.  相似文献   

7.
非离子表面活性剂对生物丁醇发酵的影响   总被引:1,自引:0,他引:1  
传统的丙酮-丁醇发酵的产物浓度过低(丁醇终浓度约为1.3 wt%),导致后期分离成本过高,从而影响了该过程的经济性,限制了其工业化进程。本文研究了高添加量的小分子非离子表面活性剂对生物丁醇发酵的影响。以吐温80为例,实验表明,当表面活性剂添加量超过其临界胶束浓度后,丁醇发酵的终浓度会随着表面活性剂添加量的增加而增加。当添加量达到5 wt%时,丁醇终浓度可以达到1.6 wt%,远高于该菌种的抑制浓度(0.8 wt%)。为阐明表面活性剂的作用机理,实验考察了吐温80对丁醇的增溶效应以及对发酵菌体表面亲疏水性的影响。结果表明,吐温80对丁醇的增溶效果很小,而对菌体表面的亲疏水性有较明显的影响。  相似文献   

8.
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.  相似文献   

9.
PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.  相似文献   

10.
Biosynthesis of acetone and n-butanol is naturally restricted to the group of solventogenic clostridia with Clostridium acetobutylicum being the model organism for acetone-butanol-ethanol (ABE) fermentation. According to limited genetic tools, only a few rational metabolic engineering approaches were conducted in the past to improve the production of butanol, an advanced biofuel. In this study, a phosphotransbutyrylase-(Ptb) negative mutant, C. acetobutylicum ptb::int(87), was generated using the ClosTron methodology for targeted gene knock-out and resulted in a distinct butyrate-negative phenotype. The major end products of fermentation experiments without pH control were acetate (3.2?g/l), lactate (4.0?g/l), and butanol (3.4?g/l). The product pattern of the ptb mutant was altered to high ethanol (12.1?g/l) and butanol (8.0?g/l) titers in pH?≥?5.0-regulated fermentations. Glucose fed-batch cultivation elevated the ethanol concentration to 32.4?g/l, yielding a more than fourfold increased alcohol to acetone ratio as compared to the wildtype. Although butyrate was never detected in cultures of C. acetobutylicum ptb::int(87), the mutant was still capable to take up butyrate when externally added during the late exponential growth phase. These findings suggest that alternative pathways of butyrate re-assimilation exist in C. acetobutylicum, supposably mediated by acetoacetyl-CoA:acyl-CoA transferase and acetoacetate decarboxylase, as well as reverse reactions of butyrate kinase and Ptb with respect to previous studies.  相似文献   

11.
利用核糖体工程选育丙酮丁醇菌提高丁醇产量   总被引:1,自引:0,他引:1  
利用核糖体工程技术对丙酮丁醇梭菌Clostridium acetobutylicum L7进行诱变筛选,以获得丁醇高产菌株。使用链霉素诱变C.acetobutylicum L7并结合设计的平板转接逐次提高链霉素浓度的筛选路线,获得丁醇产量较高的菌株S3。结果表明,S3丁醇产量为(12.48±0.03)g/L,乙醇产量为(1.70±0.07)g/L,相对于原始菌分别提高了11.2%及50%;丁醇/葡萄糖转化率由原始菌的0.19提高到0.22,丁醇生产率达到0.24 g/(L.h),相比提高30.5%;耐受丁醇浓度由原始菌的12 g/L提高到14 g/L;发酵液粘度下降到4 mPa/s,同比降低了60%,利于后续分离工作的进行,降低发酵成本。进一步研究工作表明,S3菌株遗传稳定性良好。因此,核糖体工程技术是一种选育丁醇高产菌株的有效方法。  相似文献   

12.
One hundred and seventy-eight new butanol-acetone producing bacteria related to saccharolytic clostridia were isolated from agricultural sources in Colombia and their fermentation potential was evaluated. Thirteen isolates produced more total solvents from glucose than Clostridium acetobutylicum ATCC 824. The isolates with the highest single solvent production were IBUN 125C and IBUN 18A with 0.46 mol butanol and 0.96 mol ethanol formed from 1 mol glucose, yielding 25. 2 and 29.1 g l(-1) total solvents, respectively, which is close to the maximum values described to date. Most of the new isolates produced exoenzymes for the hydrolysis of starch, carboxymethyl cellulose, xylan, polygalacturonic acid, inulin and chitosan. Together with the high efficiency of solvent production, these hydrolytic isolates may be useful for the direct fermentation of biomass. According to their physiological profile, the most solvent-productive isolates could be classified as strains of C. acetobutylicum, Clostridium beijerinckii, and Clostridium NCP262.  相似文献   

13.
添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响   总被引:2,自引:0,他引:2  
为提高丙酮-丁醇梭菌厌氧发酵生产丙酮和丁醇的能力,在发酵过程中添加有机酸(乙酸和丁酸),考察其对菌体生长、溶剂合成影响。实验表明:当添加1.5 g/L乙酸时能够促进菌体的生长,促进丙酮的合成,在600 nm处的最大OD值比参照值高出18.4%,丙酮的最终质量分数提高了21.05%,但不能促进丁醇的合成;当添加1.0g/L丁酸时能够促进菌体生长,促进丁醇的合成,在600 nm处的最大OD比参照值高22.29%,丁醇的最终质量分数比对照组提高了24.32%,但不能促进丙酮的合成。  相似文献   

14.
随着新一代生物质能源的研发,利用梭菌的发酵生产丁醇已成为热点。选用能生产丁醇的Clostridium acetobutylicum AS1.7,Clostridium acetobutylicum AS1.132,Clostridium acetobutylicumAS1.134和Clostridium beijerinckii NCMIB 8052,在多种糖源下进行发酵培养,通过比较其在不同糖源条件下的生长情况、糖利用率、丁醇及副产物产量、对丁醇、木糖耐受能力等,综合筛选出了最适用于发酵生产丁醇的备选菌种。NCMIB8052因具有最高产量、相对优良的耐受性及可利用多种糖源的特点,而被确定为发酵能力最强的菌种。  相似文献   

15.
丙酮丁醇梭菌发酵菊芋汁生产丁醇   总被引:4,自引:0,他引:4  
对丙酮丁醇梭菌Clostridium acetobutylicum L7发酵菊芋汁酸水解液生产丁醇进行了初步研究。实验结果表明,以该水解液为底物生产丁醇,不需要添加氮源和生长因子。当水解液初始糖浓度为48.36 g/L时,其发酵性能与以果糖为碳源的对照组基本相同,发酵终点丁醇浓度为8.67 g/L,丁醇、丙酮和乙醇的比例为0.58∶0.36∶0.06,但与以葡萄糖为碳源的对照组相比,发酵时间明显延长,表明该菌株葡萄糖转运能力强于果糖。当水解液初始糖浓度提高到62.87 g/L时,发酵终点残糖浓度从3.09 g/L增加到3.26 g/L,但丁醇浓度却提高到11.21 g/L,丁醇、丙酮和乙醇的比例相应为0.64∶0.29∶0.05,表明适量糖过剩有助于C.acetobutylicum L7胞内代谢从丙酮合成向丁醇合成途径调节;继续提高水解液初始糖浓度,发酵终点残糖浓度迅速升高,丁醇生产的技术经济指标受到明显影响。  相似文献   

16.
高丁醇比丙酮丁醇梭菌的选育与应用   总被引:6,自引:0,他引:6  
设计了专一性分离方法,从土样中分离了多株能产生溶剂的梭苗,经多次单细胞分离、纯化,再经亚硝基胍和甲基磺酸乙酯诱变和抗性筛选,获得几株高丁醇的丙酮丁醇梭菌。对高产菌株的性状稳定性、发酵过程、混合原料应用、温度的影响进行了研究。结果证明菌株性状稳定,丁醇产量为总溶剂的70%;过程为典型的丙酮丁醇发酵,对温度可耐受到39-40℃;能利用玉米和薯干,玉米和高梁进行正常发酵。菌株已在百吨生产罐,连续应用一年  相似文献   

17.
Effects of butanol on Clostridium acetobutylicum.   总被引:6,自引:5,他引:1       下载免费PDF全文
The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes.  相似文献   

18.
Effects of butanol on Clostridium acetobutylicum   总被引:3,自引:0,他引:3  
The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes.  相似文献   

19.
The enzymes NAD-dependent beta-hydroxybutyryl coenzyme A dehydrogenase (BHBD) and 3-hydroxyacetyl coenzyme A (3-hydroxyacyl-CoA) dehydrogenase are part of the central fermentation pathways for butyrate and butanol production in the gram-positive anaerobic bacterium Clostridium acetobutylicum and for the beta oxidation of fatty acids in eucaryotes, respectively. The C. acetobutylicum hbd gene encoding a bacterial BHBD was cloned, expressed, and sequenced in Escherichia coli. The deduced primary amino acid sequence of the C. acetobutylicum BHBD showed 45.9% similarity with the equivalent mitochondrial fatty acid beta-oxidation enzyme and 38.4% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase from rat peroxisomes. The pig mitochondrial 3-hydroxyacyl-CoA dehydrogenase showed 31.7% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enzyme from rat peroxisomes. The phylogenetic relationship between these enzymes supports a common evolutionary origin for the fatty acid beta-oxidation pathways of vertebrate mitochondria and peroxisomes and the bacterial fermentation pathway.  相似文献   

20.
ABSTRACT: BACKGROUND: Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum, Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of constitutive thl promoter. RESULTS: The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach led to the complete conversion of acetone into isopropanol, achieving a total alcohol titer of 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. CONCLUSIONS: The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 thus can be considered as a good host for further engineering of solvent/alcohol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号