首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The heteromorphic chromosomes 1 of Triturus cristatus carnifex and T. marmoratus were studied in mitotic metaphase after staining with the Giemsa C-banding technique and with the fluorochromes, DAPI (AT-specific) and mithramycin (GC-specific). They were also examined in the lampbrush form under phase-contrast before fixation and after fixation and staining with Giemsa. Chromosomes 1 of T.c. carnifex are asynaptic and achiasmatic throughout most of their long arms. They are also heteromorphic in most of their long arms for the patterns of Giemsa and fluorochrome staining and the distribution of distinctive lampbrush loops. The heteromorphic regions correspond to the regions that are asynaptic and achiasmatic. They stain more strongly with mithramycin and more weakly with DAPI than the remainder of the chromosomes, signifying that their DNA is relatively rich in GC. The patterns of staining with Giemsa and fluorochromes and the distributions of distinctive lateral loops vary from one animal to another in the same species and even in the same population. The asynaptic and achiasmatic regions of chromosomes 1 in T. marmoratus extend throughout the whole of the long arms and well beyond the heterochromatic region. Chiasmata form only in the short arm and occasionally in the short euchromatic segment at the tip of the long arms. The staining patterns of chromosomes 1 in T. marmoratus differ from those in T.c. carnifex although, like carnifex, their DNA is relatively GC-rich. The chromosomes 1 of T. marmoratus are more submetacentric than those of T.c. carnifex. In T. marmoratus chromosome 1B is about 12% shorter than 1A. There is a short paracentric inversion heterozygosity in the long arm of chromosome 1B in T. marmoratus which probably accounts for the lack of chiasmata in the euchromatin that separates the centromere from the start of the heterochromatin. In both carnifex and marmoratus, embryos that are homomorphic for chromosome 1 arrest and die at the late tailbud stage of development. The same applies to F1 hybrid embryos T.c. carnifex x T. marmoratus, and this has permitted identification of chromosomes 1A and 1B in both species. There is no correspondence between patterns of Giemsa or fluorochrome staining of the heteromorphic regions of chromosome 1 and any feature of the lampbrush chromosomes. However, the short euchromatic ends of the long arms of chromosomes 1 in both species are distinguished in the lampbrush form by a series of uniformly small loops of fine texture associated with very small chromomeres. The Giemsa C-staining patterns of both chromosomes 1A and 1B are different in each of the four subspecies of T. cristatus. T.c. karelinii stands out by having unusually large masses of Giemsa C-staining centromeric heterochromatin on all but 1 of its 12 chromosomes. A scheme is proposed for the evolution of chromosome 1 in T. cristatus and T. marmoratus, based on all available cytological and molecular data.  相似文献   

2.
The complete DNA replication sequence of the entire complement of chromosomes in the Chinese hamster may be studied by using the method of continuous H3-thymidine labeling and the method of 5-fluorodeoxyuridine block with H3-thymidine pulse labeling as relief. Many chromosomes start DNA synthesis simultaneously at multiple sites, but the sex chromosomes (the Y and the long arm of the X) begin DNA replication approximately 4.5 hours later and are the last members of the complement to finish replication. Generally, chromosomes or segments of chromosomes that begin replication early complete it early, and those which begin late, complete it late. Many chromosomes bear characteristically late replicating regions. During the last hour of the S phase, the entire Y, the long arm of the X, and chromosomes 10 and 11 are heavily labeled. The short arm of chromosome 1, long arm of chromosome 2, distal portion of chromosome 6, and short arms of chromosomes 7, 8, and 9 are moderately labeled. The long arm of chromosome 1 and the short arm of chromosome 2 also have late replicating zones or bands. The centromeres of chromosomes 4 and 5, and occasionally a band on the short arm of the X are lightly labeled.  相似文献   

3.
Populations of the gecko lizard Gekko hokouensis (Gekkonidae, Squamata) on Okinawajima Island and a few other islands of the Ryukyu Archipelago, Japan, have the morphologically differentiated sex chromosomes, the acrocentric Z chromosome and the subtelocentric W chromosome, although the continental representative of this species reportedly shows no sex chromosome heteromorphism. To investigate the origin of sex chromosomes and the process of sex chromosomal differentiation in this species, we molecularly cloned the homologues of six chicken Z-linked genes and mapped them to the metaphase chromosomes of the Okinawajima sample. They were all localized to the Z and W chromosomes in the order ACO1/IREBPRPS6DMRT1CHD1GHRATP5A1, indicating that the origin of ZW chromosomes in G. hokouensis is the same as that in the class Aves, but is different from that in the suborder Ophidia. These results suggest that in reptiles the origin of sex chromosomes varies even within such a small clade as the order Squamata, employing a variety of genetic sex determination. ACO1/IREBP, RPS6, and DMRT1 were located on the Z long arm and the W short arm in the same order, suggesting that multiple rearrangements have occurred in this region of the W chromosome, where genetic differentiation between the Z and W chromosomes has been probably caused by the cessation of meiotic recombination.  相似文献   

4.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

5.
Karyotypes of the Australian frogs Hyla caerulea (White) and Hyla phyllochroa Günther were prepared and analysed from colchicine-treated, primary cultures of adult heart, lung and kidney. The diploid chromosome number for both species is 26, which resembles that of most known karyotypes of Papuan hylids but differs from that of the genus Hyla in other regions. A statistical comparison, involving data from arm ratios, centromere indices and relative lengths of metaphase chromosomes of H. caerulea incubated at 31 and 37° C respectively, showed that the differences were non-significant at the 5% level. Similar treatment of data from cells of Hyla caerulea and Hyla phyllochroa incubated at 31°C failed to show a significant species difference. Absolute lengths of haploid chromosome complements of the two species at the same temperature were found to differ significantly. No evidence of sexual heteromorphism was found. The occurrence of a terminally situated, heterochromatic zone associated with the longer arm of the 11th pair of chromosomes is described and compared with the known condition in other hylids.  相似文献   

6.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

7.
Summary Genetic mapping of polymorphic C-bands allows direct comparisons between genetic and physical maps. Eleven C-bands and two seed storage protein genes on chromosome 1B, polymorphic between Langdon durum and four accessions of T. dicoccoides, were used to study the distribution of recombination along the entire length of the chromosome. Recombination in the short arm was almost completely restricted to the satellite, two-thirds of the arm's length from the centromere; the Gli-B1 gene was found to be tightly linked to the telomeric C-band. In the long arm, the distal 51.4% of the arm accounted for 88% of recombination; the proximal half of the arm accounted for the remaining 12%. While the amount of crossing-over differed significantly between the four T. dicoccoides 1B chromosomes, there were no significant differences in the relative distributions of crossing-over along the chromosome. Consequently, the genetic maps obtained from the four individual T. dicoccoides chromosomes were combined to yield a consensus map of 14 markers (including the centromere) for the chromosome.  相似文献   

8.
B chromosomes occur in several Neotropical fish species. Cytogenetic analysis of 27 specimens (15 females and 12 males) of Astyanax scabripinnis paranae from the Araquá river (a small headwater tributary of the Tietê river) shows that this population has 2n=50 chromosomes (4M+30 SM+4ST+12A), two chromosome pairs with NORs and conspicuous C-band positive blocks in the terminal position of the long arm of four chromosome pairs. In this population, eight females presented 2n=51 chromosomes and the extra chromosome was a large metacentric similar in size and morphology to the first chromosome pair in the karotype. This accessory chromosome is entirely heterochromatic in C-banded metaphases and shows a late replication pattern evidenced by BrdU incorporation. There was no significant correlation between the presence of B chromosomes and increased NOR activity at the P>0.05 level. Some aspects related to these B chromosomes are discussed.  相似文献   

9.
D. G. Bedo 《Chromosoma》1987,95(2):126-135
Meiotic pairing of X and Y chromosomes in male Lucilia cuprina was studied by cytological observation of normal, rearranged and deficient sex chromosome karyotypes in spermatogenesis. Two X-Y pairing regions located distally in each arm of the X and Y chromosomes were defined. Contrasting with findings in Drosophila melanogaster, these pairing regions show specific recognition of their partners. By studying rearranged sex chromosomes short arm pairing was localised to their distal ends, closely associated with secondary constrictions containing nucleolar organisers in both sex chromosomes. Short arm pairing is very tight and not greatly disrupted by chromosome rearrangement, deficiency for the Y chromosome long arm or the presence of supernumerary X chromosomes. The pairing region of the long arms could not be precisely localised but probably also occurs at their distal ends. Pairing between the long arm sites is much weaker and is easily disrupted by chromosome rearrangement, failing completely in flies deficient for the Y chromosome short arm. No cytologically visible pairing was seen between X chromosomes and the remainder of the Y. In males with an extra X chromosome, the ends of both X chromosomes pair to form multivalents with normal and rearranged Y chromosomes provided the Y short arm is present, otherwise an independent X chromosome bivalent is formed. The mechanism of pairing in male Lucilia sex chromosomes thus seems to depend on specific loci of distinctive structure within the X and Y heterochromatin. Comparison of cytological and genetic data shows that increasing cytological pairing failure is matched by higher genetic X-Y nondisjunction but that the former occurs at much higher levels. In some karyotypes cytologically observed X-Y pairing failure is not matched by high frequencies of nondisjunction presumably because weak pairing associations are disrupted during slide preparation.  相似文献   

10.
Many but not all rainbow trout strains have morphologically distinguishable sex chromosomes. In these strains, the short arm of the X has multiple copies of 5S rDNA and a bright DAPI band near the centromere, both of which are missing from the Y chromosome, which has a very small short arm. We examined the presence of these markers using fluorescence in situ hybridization (FISH) in four different YY clonal lines derived from different strains and compared the results with sexed fish of the Donaldson strain with the normal X/Y heteromorphism. The Y chromosome in two of the YY clonal lines (Arlee and Swanson) is indistinguishable from the X chromosome and it is positive for 5S rDNA and the DAPI bright band. On the other hand, both 5S rDNA sequences and the DAPI band were not found on the Y chromosome in Hot Creek and Clearwater which have the normal Y. Thus the presence of these two cytogenetic markers may account for the size difference between the short arm of the X and Y chromosome found in most rainbow trout strains. In fishes the expression of one type of 5S rRNA is restricted to oocytes and previous work suggests that although XX males are fairly common, XY females are rare, implying a selective disadvantage for XY females. A hypothesis is presented to explain why this sex chromosome heteromorphism is not closely linked to the SEX locus, which is found on the long arm of the Y chromosome in rainbow trout.  相似文献   

11.
We have examined embryonic development in three species (T. carnifex, T. cristatus, and T. marmoratus) of European newts of the genus Triturus (subgenus Neotriton) in which developmental arrest occurs in embryos that are homomorphic for a chromosomal heteromorphism involving chromosome 1 (Horner and Macgregor: J. Herpetol., 19:261-270, 1985). Embryonic arrest occurred during tailbud stages in all three species, but at a slightly earlier stage in T. marmoratus. Two phenotypes were identified among the arrested embryos. One of these is indistinguishable in embryonic morphology from normal embryos at all stages up to the time of arrest, but the other is characterized by a protruding yolk plug, which persists from the late gastrula/early neurula stage to the tailbud arrest stage and apparently interferes with normal morphogenesis. Evidence is presented that the two arrested phenotypes, which occur in approximately equal numbers, represent embryos that carry the two alternative homomorphic chromosome pairs of chromosome 1 heteromorphism. We conclude that developmental arrest reflects a balanced lethal heterozygosity probably resulting from an unequal exchange of genic material between the homologues of chromosome 1 which occurred in a common ancestor of the Neotriton species.  相似文献   

12.
13.
Summary The chromosome complement of male and female Rhesus monkey has been investigated in kidney cells cultivatedin vitro for 3 to 6 days. The chromosome number is 42. The Y chromosome of the heterogametic male is the smallest element in the complement, and it is acrocentric. The X chromosome ranks eigth in decreasing order of size and typically has an arm ratio of 1.4. The autosomes form a graded size series of metacentric chromosomes, 3–15μ long in early metaphase, and with arm ratios from 1.1 to 3.3. Chromosome IX carries a large secondary constriction near the centromere; it is presumed to be the main nucleolar chromosome. A smaller secondary constriction is found consistently in the long arm of chromosome I. The X chromosome and chromosome XXI appear to be dimorphic in the limited population studied, the alternative forms differing in arm ratios but not in total length. An idiogram of the haploid chromosome complement is presented incorporating measurements of 10 completely analyzed nuclei, five from male monkeys and five from females. On the basis of relative length, arm ratio, and occurrence of secondary constrictions, most chromosomes of the complement can be individually identified. Supported in part by grants from the National Cancer Institute of Canada; the National Institutes of Health of the United States, Public Health Service; and the National Foundation for Infantile Paralysis.  相似文献   

14.
Triturus cristatus carnifex provides a particularly clear example of sexual dimorphism for chiasma frequency and localisation. Oocytes from normal XX females routinely carry one proximal chiasma on each arm of their lampbrush bivalents. Spermatocytes from normal XY males have more numerous and relatively distal chiasmata. Lampbrush chromosomes from the oocytes of sex-reversed XY neofemales are found to resemble those from normal oocytes in having one proximal chiasma on each bivalent arm. A comparison of particular markers on the heteromorphic long arm of chromosome 1 provides evidence to equate the lampbrush 1A to somatic 1A, and confirms previous reports that lampbrush chromosome 1A is slightly longer than 1B. The XY sex bivalent of neofemales does not show any obvious heteromorphy of recognised marker loops. Received: 9 September 1997 / Accepted: 16 October 1997  相似文献   

15.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

16.
17.
Mitotic analyses using RBA- and C-banding were performed on Stenodermatine bats with X-autosome (XY1Y2) and X- and Y- autosome (neo-XY) translocations. RBA-banded metaphases of females revealed differential replication of the inactive X chromosome. An early replicating band comprises the short arm of the X, and an intermediate replicating band is located interstitially on the long arm. The early replicating short arm has a homologous counterpart either in the form of a free autosome (the Y2) or as part of the Y. Both the "autosomal" short arm of the X and its homologue fused to the Y are C-band negative and behave autonomously from the remainder of the sex chromosomes. They are separated from X and Y chromatin by centromeric heterochromatin which presumably acts as a barrier. The intermediate replicating region of the long arm of the X is also present in the subfamily Phyllostominae. In both subfamilies this region lacks a homologous counterpart. However, it may also represent a translocated autosome which, unlike the short arm of the X, is not separated from the inactive X by centromeric heterochromatin. Its intermediate replication time may represent a retarded replication due to its juxtaposition to late replicating X chromatin. These data are discussed in light of the theory of the evolution of sex chromosome heteromorphism, specifically as it applies to mammals.  相似文献   

18.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum × Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS · 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS · 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS · 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

19.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

20.
Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 *1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 *1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 *1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid genomes. However, the RbcS genes, located on 2BS, were more conserved (double dosage), indicating that the above mechanism(s) does not operate equally on individual genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号