首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of net mineralization using a field incubation method were made over a full growing season (180 d). Soil cores, taken from cut swards which for many years had been previously grazed by cattle, were placed in jars in the field for successive incubation periods of 14 d. Acetylene was added to the incubation jars to inhibit nitrification in the soil cores and thereby prevent losses of N through denitrification. Net mineralization over 180 d amounted to 415, 321 and 310 kg N ha–1 under grass/clover, unfertilized grass and grass receiving 420 kg N ha–1 y–1, respectively. At the start of the growing season, an index of potentially mineralizable N in the soil was estimated by a chemical extraction method, but this index was <50% of the estimates obtained by field incubation. The amount of N in herbage harvested regularly from the swards also under-estimated the supply of N from the soil, with apparent recoveries of 53, 82 and 74% and total yields of N of 240, 263 and 538 (kg N ha–1) from grass/clover, unfertilized grass and fertilized grass, respectively. Mineralization rates varied significantly with seasonal soil temperature fluctuations, but the incubation method was apparently less sensitive in relation to changes in soil water content. Rates of N-turnover (as % of total soil N) were highest under grass/clover (9%), but similar under fertilized and unfertilized grass swards (approximately 5%).  相似文献   

2.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

3.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

4.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

5.
The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO42– corresponded to 21.6–40.1 kg ha–1 and nitrogen in NH4+ and NO3 to 8.9–17.4 kg N ha–1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 S cm–1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha–1 yr–1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m–2 after addition of nitrogen and 1.34 and 2.39 g N m–2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m–2 in C. villosa and 4.29–4.39 g N m–2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha–1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha–1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.  相似文献   

6.
Summary In a udic chromusterts the transformation of an initial application of15N-urea @ 80 kg N ha–1 to rice (Oryza sativa L.) in rice-wheat (R-W) and to wheat (Triticum aestivum L.) in wheat-rice (W-R) rotations was followed in 6 successive crops in each rotation. All rice crops were grown in irrigated wetland and wheat in irrigated upland conditions.The first wheat crop in W-R rotation utilized 22 kg fertilizer N ha–1 as compared to 19 kg by the corresponding rice crop in R-W rotation. But the latter absorbed more soil N than the former. About 69% of the total N uptake in rice was derived from mineralization of soil organic N as compared to 61% in wheat.The succeeding wheat crop in R-W rotation utilized 6.7% of the residual fertilizer N in the soil but the corresponding rice crop in W-R rotation only 2.2%. The higher utilization appeared to be related to a greater incorporation of labelled fertilizer N in mineral and hexosamine fractions of the soil N. After the second crop in each rotation, the average residual fertilizer N utilization in the next 4 crops ranged between 3 and 4%.The total recovery of15N-urea in all crops amounted to 21.7 and 24.3 kg N ha–1 in R-W and W-R rotation, respectively. At the end of the experiment, about 9 to 10 kg ha–1 of the applied labelled N was found in soil upto 60 cm depth. Most of the labelled soil N (69–76%) was located in the upper 0–20 cm soil layer indicating little movement to lower depths despite intensive cropping for 4 years.  相似文献   

7.
Chalmers  A. G.  Bacon  E. T. G.  Clarke  J. H. 《Plant and Soil》2001,228(2):157-177
The management and effects of 3-year and 5-year set-aside covers on soil mineral nitrogen (SMN, 0.0–0.9 m) were studied at six sites in England. Soil mineral N was measured annually in autumn and spring during the period of set-aside cover, with more frequent SMN sampling over the first winter after ploughing out the covers. Spring SMN was measured in the second year after set-aside. Nitrate leaching losses were also measured at three sites in the first winter after destruction of the 5-year set-aside covers. Winter cereals were grown in both test years after each set-aside period.Amounts of both autumn and spring SMN in the perennial rye-grass (PRG), perennial rye-grass/white clover (PRG/WC) and natural regeneration (NR) covers were generally less than, or similar to those in the continuous arable treatment during each year of set-aside, indicating a slightly smaller nitrate leaching risk under set-aside management. Slight increases in autumn SMN, and hence leaching potential were, however, observed under PRG/WC in the fourth and fifth years, compared with continuous arable cropping.Ploughing out of both 3-year and 5-year covers increased soil N supply and potential nitrate leaching losses over winter, compared with continuous arable cropping. By the following spring, mean increases across all sites in amounts of SMN after 3-year covers of PRG, NR and PRG/WC were 14, 18 and 33 kg ha–1 N, respectively, compared with the arable rotation. Equivalent increases in spring SMN following destruction of the 5-year set-aside covers were almost identical, at 17, 19 and 33 kg ha–1, respectively, although only the ploughed-out PRG/WC covers increased SMN at the clay sites. Measured nitrate leaching losses in the first winter after 5-year set-aside were greatest after PRG/WC at two sites on shallow chalk but greatest after NR, which had a naturally large clover content, at the third site which was on a sandy soil. However, the leaching losses after set-aside were relatively small, relative to typical losses after ploughing out intensively managed grass or grass/clover swards, and would have been compensated for by potentially less leaching during set-aside.Spring SMN measurements in the second year after ploughing out the set-aside covers, showed negligible or, for PRG/WC, only slight increases (12 – 18 kg ha–1) in residual soil N supply after both 3-year and 5-year covers, compared to continuous arable cropping. The extra N mineralisation after cover destruction justified small reductions in fertiliser N inputs for the first, but not second crop following either 3- or 5-year set-aside, unless the cover had contained a large clover content. Both 3-year and 5-year set-aside covers had minimal or no effect on either organic matter content, apart from a slight increase in the PRG/WC treatments, or extractable phosphorus, potassium and magnesium status in the topsoil.  相似文献   

8.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

9.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

10.
A field plot experiment was conducted on two types of paddy soils in the Taihu Lake Region of China from June 2000 through 2002 to assess phosphorus (P) losses by runoff and drainage flow and the effectiveness of rice–wheat double cropping on reducing P losses from paddy soils. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg P ha–1 for rice season trials, and 0, 20, 80, and 160 kg P ha–1 for wheat season trials. The experiments consisted of four replicates (plots of 5 × 6 m in a randomized block design) of each treatment in Argic stagnic anthrosols (Anzhen site) and six replicates in Cumulic stagnic anthrosols (Changshu site). P30 and P20 treatments (30 and 20 kg P ha–1 in rice and wheat seasons, respectively) were considered as conventional P application rates in this area. Higher P treatments, such as P150 and P300 for rice and P80 and P160 for wheat, were intended to simulate the status of soil P in ~10–20 years with an application of P30 or P20 kg P ha–1 each season. Results revealed that the average concentration of total P (TP) in runoff samples was 0.870 mg P l–1 from P30 plots during the rice season, and 0.763 mg P l–1 from P20 plots during the wheat season in both years at the Anzhen site, while it was 0.703 and 1.292 mg P l–1, respectively, at the Changshu site. Average TP load (mass loss) at the Anzhen site with conventional P application rates was 220.9 and 439.5 g P ha–1 during rice season in 2000/2001 and 2001/2002, respectively, but was 382.3 and 709.4g P ha–1 during wheat season, respectively. Mass loss at the Changshu site was 140.4 and 165.7 g P ha–1 during the rice season and 539.1 and 1184.6 g P ha–1 during the wheat season, respectively. P losses from paddy soils were significantly greater during the wheat season, especially at the Changshu site, indicating that planting rice reduced P. Phosphate fertilizer levels significantly affected P concentrations and P loads in runoff both seasons. Both mean concentrations and average seasonal P loads from the P150/P80 plots were lower than that from the P300/P160 plots, but significantly higher than that from the P30/P20 and P0 plots. This implied that runoff P loads would be greatly increased in 10–20 years as a result of the accumulation of soil P if 50 kg P ha–1 (rice season plus wheat season) is applied each year.  相似文献   

11.
In a 2-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim one experimental and nine commercial maize cultivars were compared for their ability to utilize soil nitrate and to reduce related losses of nitrate through leaching. Soil nitrate was monitored periodically in CaCl2 extracts and in suction cup water. Nitrate concentrations in suction water were generally higher than in CaCl2 extracts. Both methods revealed that all cultivars examined were able to extract nitrate down to a soil depth of at least 120 cm (1988 season) or 150 cm (1987 season). Significant differences among the cultivars existed in nitrate depletion particularly in the subsoil. At harvest, residual nitrate in the upper 150 cm of the profile ranged from 73–110 kg N ha–1 in 1987 and from 59–119 kg N ha–1 in 1988. Residual nitrate was closely correlated with nitrate losses by leaching because water infiltration at 120 cm soil depth started 4 weeks after harvest (1987) or immediately after harvest (1988) and continued until early summer of the following year. The calculated amount of nitrate lost by leaching was strongly influenced by the method of calculation. During the winter of 1987/88 nitrate leaching ranged from 57–84 kg N ha–1 (suction cups) and 40–55 kg N ha–1 (CaCl2 extracts), respectively. The corresponding values for the winter of 1988/89 were 47–79 and 20–39 kg N ha–1, respectively. ei]Section editor: B E Clothier  相似文献   

12.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium.  相似文献   

13.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

14.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

15.
Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.  相似文献   

16.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

17.
J. F. Witty 《Plant and Soil》1979,52(2):151-164
Summary N2-fixation by algae on the Broadbalk continuous wheat experiment was measured over a two year period using the acetylene reduction technique. The plots studied receive spring fertilizer treatments including farmyard manure and combinations of nitrochalk and Na, P, K and Mg which have remained much the same since the experiment started in 1843.Nitrogen applied at 196 kg ha–1 in spring suppressed algal N2-fixation until late in the season but at lower levels (48 kg N ha–1) the denser plant canopy increased both surface moisture and fixation. Herbicide treatment decreased fixation on plots of moderate nutritional status early in the season but had little effect on unfertilised plots where weed cover was sparse. On plots where weed and crop cover was very dense herbicide treatment increased fixation in August.Algal N2-ase activity, assayed by C2H2 reduction, continued throughout the night at a rate which averaged 33% of the midday value. Laboratory experiments indicate that dark fixation is very temperature sensitive and this value may represent a maximum. Algal crust in the field dried to 4.5–6.8% H2O content became active 3 1/2 h after rewetting and reached a steady state after 7 h which represented only 6–22% of that at the previous maximum suggesting that many cells had been killed.In a year with average rainfall algae on plots receiving 48 kg N ha–1 were estimated to fix 25–28 kg N ha–1 and plots without fertiliser 13–19 kg N ha–1. Algal fixation appeared to make a substantial contribution to the continuing fertility of unfertilised plots.  相似文献   

18.
As the evidence of global climate change continues to mount, its consequences for cropland productivity assume particular significance. Against the backdrop of past agricultural practices, simulation models offer a glimpse into the future, showing the effect of temperature changes on crop production. In this study, we first quantified the carbon (C) and nitrogen (N) budgets of Ohios cropland ecosystems using inventory yield data of corn for grain, oat, and all wheat for the period 1866–1996 and soybean for the period 1924–96. Then we explored the responses of Ohios continuous soybean croplands to changes in temperature, carbon dioxide (CO2) concentration, initial soil organic C and N (SOC-N) pools, soil texture, and management practices by developing a simple cropland ecosystem model (CEM) and performing a long-term sensitivity analysis. Finally, CEM simulations were evaluated against independent observations of SOC values (0–19 cm) averaged over 470 northwest Ohio sites between 1954 and 1987 under conventional tillage and rotations of corn–soybean–winter wheat by using the historical yield data (r 2 = 0.8). The C contents per hectare of crop harvests increased by 178% for oats, 300% for corn for grain, and 652% for all wheat between 1866 and 1996 and by 305% for soybean between 1924 and 1996. Ohio croplands acted as C–N sources, releasing average net ecosystem emissions (NEE), including the removal of harvested C–N, of 4,598 kg CO2 ha–1 and 141 kg N ha–1 in 1886 and 205 kg CO2 ha–1 (except for the corn-for-grain cropland) and 39 kg N ha–1 in 1996. The continuous corn croplands continued to become a C sink, sequestering 255 kg C ha–1 in 1996. Results of the sensitivity analysis for Ohios continuous soybean croplands revealed that the SOC pool increased by 6.9% and decreased by 7.5% in response to a doubled CO2 concentration and a temperature increase of 2.8°C over 100 years, respectively. The sequestration potential of the SOC pool increased by 6.5% at a rate of 24.6 kg C ha–1 y–1 for the same period with finer soil texture (loam to silty clay loam). The shift from conventional to conservation residue practice led to an 11% increase in the steady-state SOC storage at a rate of 42 kg C ha–1 y–1 for 100 years.  相似文献   

19.
The conversion of annually cultivated or disturbed marginal land to forage grasses has the potential to accrete soil organic carbon (SOC) in the surface 0–15 cm depth. Soil organic carbon mass (Mg ha–1) was measured in ten side-by-side cultivated versus forage grass seed-down restoration treatments on catenae at various sites in east-central Saskatchewan, Canada. Treatments were imposed for time periods ranging from five to twelve years. It was found that SOC mass was usually significantly higher in the grassland restorations versus the paired cultivated equivalents. Estimated SOC gain rates (0–15 cm) from grass seed-down in the region was estimated to be 0.6 to 0.8 Mg C ha–1 yr–1. Light fraction organic carbon (LFOC), the labile component of SOC, was more variable in the comparisons than SOC. Measured 13C natural abundance values in selected equivalent comparisons revealed a possible contribution from seeded warm season C4 grasses and soil carbonate 13C to the C pools in upslope positions of the landscape. Overall, grassland restoration in this region appears to result in increased carbon storage in the surface soil.  相似文献   

20.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号