首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A morphometric analysis of root statocytes was performed on seedlings of lentil ( Lens culinaris L., cv. Verte du Puy) in order to determine the effects of microgravity on the polarity of these cells. Seedlings were grown: (1) on the ground, (2) in microgravity, (3) on a 1 g centrifuge in space, (4) first in microgravity and then placed on a 1 g centrifuge for 3 h. Dry seeds were hydrated in space (except for the ground control) for 25 h in darkness at 22°C in the Biorack facility developed by the European Space Agency. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in the Biorack glove box. The average shape of the statocytes and the location of endoplasmic reticulum, amyloplasts and nucleus in the cells were analysed in the four samples. By considering the cell shape, it appears that the morphology of the statocytes on the ground was different from that observed in the space samples. Cell polarity was similar in microgravity and in the centrifuged samples except for the distribution of the amyloplasts. These organelles were not distributed at random in near zero gravity, and they were more numerous in the proximal than in the distal half. Moreover, the statoliths were more voluminous in microgravity than in the centrifuged samples. The nucleus was closer to the cell center in the statocytes of roots grown in microgravity than in statocytes of roots grown in microgravity and then placed on the 1 g centrifuge for 3 h. It is hypothesized that the nucleus is attached to the cell periphery and that its location is dependent upon gravity.  相似文献   

2.
The gravitropic curvature of seedlings of lentil ( Lens culinaris L. cv. Verte du Puy) grown in microgravity and stimulated on the 1 g centrifuge for 5 to 60 min was followed by time lapse photography in near weightlessness in the frame of the IML 1 Mission of Spacelab. In microgravity, the root tip could overshoot the direction of the 1 g acceleration after bending, whereas roots stimulated on the ground did not reach the direction of the gravity vector. On earth, there is, therefore, a regulation (inhibition of root curvature), which is gravity dependent. In space, the initial rate of curvature as well as the amplitude of curvature varied as a function of the quantity of stimulation (Q, in g min). For a given quantity of stimulation, the rate of curvature remained constant for 80 min. The bending has thus a certain inertia, which is linked to the mechanism of differential growth. The presentation time (Tp) of the lentil root was calculated by extrapolation to zero curvature of the regression line representing either the initial rate of curvature or the amplitude of curvature at 2 h after the end of the stimulation. Tp was estimated to 27 and 26 s. respectively. These results confirm the values of Tp obtained by clinostats, and they also lead to a reconsideration of the causes of the kinetics of root curvature.  相似文献   

3.
Lentil seedlings were grown for 28 h in space, on board Spacelab (IML 1 Mission) and growth of the primary root was analysed. The length of cortical cells was less in near weightlessness than on the 1 g centrifuge (flight control) and mitotic index was lower but there was no apparent perturbation in the mitosis. To further investigate which phase of cell cycle was modified, densitometric analysis of nuclear DNA content in cortical cells was carried out by the mean of an image processing system (SAMBA). In microgravity there was a decrease in DNA synthesis and a promotion of the arrest in the G2 phase of cell cycle. These results, and other ones obtained elsewhere on a slowly rotating clinostat, led us to think that in microgravity the perturbation of the gravisensing cells and/or the absence of convection could account for the modification of cell growth registered in the primary root.  相似文献   

4.
The ability of clinostats to simulate microgravity was evaluated by comparing lentil ( Lens culinnrias L. cv. Verte du Puy) seedlings grown in space (Spacelab D1 Mission) with seedlings grown on a slowly rotating elinostat. Seeds were germinated and incubated for 25.5 h at 22°C (1) in microgravity, (2) on a 1g-centrifuge in space. (3) on a slowly rotating elinostat and (4) on the ground. Morphological (root length and orientation) and ultrastructural (distribution of amyloplasts, location of the nucleus in statocytes) parameters were studied. For clinostat experiments, two different configurations were employed: the longitudinal axis of the root was parallel (horizontal elinorotation) or perpendicular (vertical elinorotation) to the axis of rotation. the same configurations were used for the lg-controls. Root length and orientation were similar for roots grown on the clinostat and in microgravity. The amyloplasts were identically distributed in statocytes of horizontally clinorolated roots and in statocytes differentiated in microgravity. However, the location of the nucleus was similar in vertically rotated roots and microgravity samples. Since the involvement of the nucleus in graviperception is not known, it can be concluded that horizontal clinorotation simulates microgravity better than vertical elinorotation.  相似文献   

5.
Root growth was studied for seedlings of lentil ( Lens culinaris L. cv. Verte du Puy) grown for 27 h either on a slowly rotating clinostat (0.9 rev. min−1) of vertically (controls). Horizontal clinorotation was employed, so that the longitudinal axis of the root was parallel to the axis of the rotation. Morphological (root length and orientation) and cellular (cell proliferation and cell elongation) parameters were studied. The cell cycle was also analysed by flow cytometry. Root length deviation of the roots from the initial orientation was observed on the clinostat; this deviation could be due to spontaneous oscillation. Cell elongation of the clinostat-rotated roots occurred closer to the tip than in the vertical roots, but the mitotic index was not modified. Clinorotation did not change the frequencies of the G1, S and G2 phases of the cell cycle. These results were compared to those obtained during the D1 mission on Spacelab, 1985. The effects of microgravity on root orientation and mitotic index were not simulated by clinorotation.  相似文献   

6.
Although roots are normally hidden in soil, they may inadvertently be exposed to low light levels in experiments or in natural conditions through cracks or light transmittance through the soil. Light has been implicated in root morphogenesis. Thus, effects of low light conditions on lentil (Lens culinaris L. cv. Verte du Puy) root morphology and root pigmentation were studied. Lentil seedlings were grown in peat or transparent, nutrient-fortified agar at a 12-h light (PAR 240 μmol · m(-2) · s(-1)), 12-h dark cycle. Roots were exposed to low levels (≈ 1-10 μmol · m(-2) · s(-1)) of broadband white light, either directly or indirectly by aboveground light penetrating the growth medium. Control roots were grown in darkness. In situ spectroscopy was used to measure transmittance and reflectance spectra of intact root tissue by mounting the upper part of the primary root directly in a spectrophotometer equipped with an integrating sphere attachment. The transmittance and reflectance spectra were used to calculate the in situ root absorbance spectrum. Absorbance bands were found in the regions 480-500 nm and 650-680 nm, possibly due to low levels of root-localised carotenoids and chlorophylls, respectively. Low light levels (≈ 1-10 μmol · m(-2) · s(-1) ) transmitted through the growth medium significantly increased root pigment concentration and root biomass, and altered root morphology by enhancing lateral root formation and inhibiting root elongation relative to roots grown in complete darkness. The light-induced changes in root morphogenesis and pigmentation appear to be primarily due to upper root light perception.  相似文献   

7.
Oscillatory growth movements of roots in weightlessness   总被引:2,自引:0,他引:2  
The gravitropic curvature of lentil roots ( Lens culinaris L. cv. Verte du Puy), grown in near weightlessness and stimulated on a 1-g centrifuge for 5 to 60 min was followed by time lapse photography. The experiment was carried out in the frame of the IML 1 Mission of Spacelab. Due to the applied acceleration field, the tip of the roots bent and reoriented with respect to the acceleration vector. However, visual inspection of the data could indicate an oscillatory movement superimposed on the gravitropic reorientation.
We applied two signal processing techniques, fast Fourier transform (FFT) and maximum entropy spectral analysis (MESA), to provide quantitative data about the oscillatory movements of the lentil roots under gravity free conditions. In the case with very few data points in the time series the MESA method is superior to the conventional FFT. In the lentil root movements, the Fourier analysis could not extract and resolve the oscillatory signals present in the time series. The MESA approach revealed oscillations with periods around 35 and 50 min for the present lentil roots.
Circumnutations are, therefore, present in roots also in weightlessness.  相似文献   

8.
The location of the nucleus in statocytes or lentil roots grown: 1), at 1 g on the ground, 2), on a 1 g centrifuge in space, 3), in simulated microgravity on a slowly rotating clinostat (0.9 rmp) 4), in microgravity in space was investigated and statistically evaluated. In cells differentiated at 1 g on the ground, the nuclear membrane was almost in contact with the plasmalemma lining the proximal cell wall, whereas in statocytes of roots crown on the clinostat there was a distance of 0.47 micrometers (horizontal clinorotation) and or 0.76 micrometers (vertical clinorotation) between these membranes. However, in microgravity the nucleus was the most displaced, 0.87 micrometers from the proximal cell wall. Centrifugation of vertically grown roots in the root-tip direction showed that the threshold of centrifugal force to detach all nuclei from the proximal cell wall was about 40 g. In statocytes developed in the presence of cytochalasin B at 1 g the nuclei were sedimented on the amyloplasts at the distal cell pole, demonstrating that the location of the nucleus depends on actin filaments. The results obtained are in agreement with the hypothesis that gravity causes a tension of actin filaments and that this part of the cytoskeleton undergoes a relaxation in microgravity.  相似文献   

9.
A crop growth model developed in Canterbury, New Zealand was used to assess the potential of lentil (Lens culinaris) as a grain legume crop in the UK. The model was validated using five sowing dates at Durham (54.77°N, 1.58°W) in 1999. Predicted time to flowering was within 7 days of actual time to flowering and predicted seed yields were within 9% of actual yields. Actual yields ranged from 1.40 to 1.65 t ha‐1. Seed was of high quality. The model was used to predict rate of development and yields of spring and autumn sown lentils at eight sites along a transect from NW Scotland (Stornoway, 58.22°N, 6.32°W) to SE England (East Mailing, 51.28°N, 0.45°E) chosen to encompass important environmental gradients in the UK. In general, for a 1 May sowing with 150 or 250 mm plant available water (PAW) and a 1 October sowing with 150 mm PAW, predicted mean values over the period 1987–95 for maximum crop growth rate, maximum leaf area index, radiation intercepted, total dry matter produced and seed yield were closely positively related to monthly mean values for mean daily air temperature and increased along the transect from NW to SE UK. Time to flowering generally decreased along the transect from NW to SE UK ranging from 28 June to 9 July and from 20 May to 14 June with the May and October sowings respectively. For the 1 May sowing with 250 mm PAW, predicted mean seed yield ranged from 1.00 to 1.90 t ha‐1. For all sites, yield was very stable over the 9 yr period. For the 1 May sowing with 150 mm PAW, predicted mean seed yield ranged from 0.97–1.23 t ha‐1. Yields for the four more southerly sites were more variable at the lower PAW and, in exceptionally dry years, were substantially lower than average. For these sites, autumn sowing increased seed yields in exceptionally dry years and gave similar or greater mean seed yields to spring sowing with 250 mm PAW. For East Mailing, predicted yields for autumn sowing were on average 2.78 t ha‐1. Also, for Stornoway, because of its relatively high overwinter temperatures, the model predicted substantial increases in yield with autumn sowing. It is concluded that lentil has considerable potential as a grain legume crop in the UK.  相似文献   

10.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

11.
The GRAVI-1 experiment was brought on board the International Space Station by Discovery (December 2006) and carried out in January 2007 in the European Modular Cultivation System facility. For the first run of this experiment, lentil seedlings were hydrated and grown in microgravity for 15 h and then subjected for 13 h 40 min to centrifugal accelerations ranging from 0.29 x 10(-2) g to 0.99 x 10(-2) g. During the second run, seedlings were grown either for 30 h 30 min in microgravity (this sample was the control) or for 21 h 30 min and then subjected to centrifugal accelerations ranging from 1.2 x 10(-2) g to 2.0 x 10(-2) g for 9 h. In both cases, root orientation and root curvature were followed by time-lapse photography. Still images were downlinked in near real time to ground Norwegian User Support and Operations Center during the experiment. The position of the root tip and the root curvature were analyzed as a function of time. It has been shown that in microgravity, the embryonic root curved strongly away from the cotyledons (automorphogenesis) and then straightened out slowly from 17 to 30 h following hydration (autotropism). Because of the autotropic straightening of roots in microgravity, their tip was oriented at an angle close to the optimal angle of curvature (120 degrees -135 degrees ) for a period of 2 h during centrifugation. Moreover, it has been demonstrated that lentil roots grown in microgravity before stimulation were more sensitive than roots grown in 1 g. In these conditions, the threshold acceleration perceived by these organs was found to be between 0 and 2.0 x 10(-3) g and estimated punctually at 1.4 x 10(-5) g by using the hyperbolic model for fitting the experimental data and by assuming that autotropism had no or little impact on the gravitropic response. Gravisensing by statoliths should be possible at such a low level of acceleration because the actomyosin system could provide the necessary work to overcome the activation energy for gravisensing.  相似文献   

12.
The effect of benzylaminopurine (BAP) on the formation of roots from lentil shoots regenerated on media containing BAP was studied. Seedling shoot tips, first nodes and bractlets, and immature seeds cultured on the initiation media containing 2.25 or 0.225 mg/l of BAP regenerated multiple bud shoots. The regenerated shoots formed roots in percentages ranging from 4.6 to 39.9% on a rooting medium (R medium) containing 2 mg/l of indoleacetic acid. Rooting success on R medium depended upon the cytokinin used in the initiation media, its concentration, and the time elapsed during shoot formation on these media prior to transplanting regenerated shoots to R medium. In vivo study of root growth of lentil seedlings demonstrated the strong inhibitory effect of BAP on root growth reflected in a drastic reduction of the mitotic index of the root meristem. Received: 27 August 1996 / Revision received: 12 December 1996 / Accepted: 15 January 1997  相似文献   

13.
Gravitropic responses of dark grown oat coleoptiles were measured in weightlessness and under clinorotation on earth. The tests in microgravity were conducted in Spacelab during the IML-1 mission and those on clinostats were conducted in laboratories on earth. The same apparatus was used for both kinds of tests. In both cases autotropism and gravitropic responsiveness were determined. This allowed a quantitative comparison between the plants' responses after receiving the same tropistic stimulations either in weightlessness or on clinostats.
Autotropism was observed with oat coleoptiles responding in weightlessness but it did not occur on clinostats. Gravitropic responsiveness was measured as the ratio between the incremental bending response (degrees curvature) and the corresponding incremental g-dose (stimulus intensity times duration for which it was applied). Plants were tested at either of two stages of coleoptile development (i.e. different coleoptile lengths). From a total of six different kinds of critical comparisons that could be made from our tests that provided data for clinorotated vs weightless plants, three showed no significant difference between responses in simulated vs authentic weightlessness. Three other comparisons showed highly significant differences. Therefore, the validity of clinorotation as a general substitute for space flight was not supported by these results.  相似文献   

14.
Site of graviperception in roots: a re-examination   总被引:1,自引:0,他引:1  
Two lines of evidence have been cited to support the assertion that the root cap is the sole site of graviperception in the root. The first evidence is based on surgical removal of the cap, which abolishes the response to gravity. This is sufficient to conclude that the cap is involved in gravitropism, but not to conclude that the cap is the site of graviperception. The second is based on the results of centrifugation experiments, in which different parts of the plant are subjected to different centrifugal forces. The data from such experiments have been cited to support the conclusion that the perception of gravity is limited to the rootcap. However, these data actually support the conclusion that gravity is perceived throughout the root tip, and not only in the root cap. We believe that the data support the conclusion that the root cap is involved in root gravitropism, but that there is inadequate evidence to conclude that the cap is the sole site of graviperception.  相似文献   

15.
Plant seedlings show exaggerated growth responses on a three-dimensional clinostat. Such an automorphogenesis appears to be one of major factors which govern the life cycle of higher plants under a microgravity environment. On the three-dimensional clinostat, maize roots exhibited curvatures in three different portions; 1) the basal region just protruding from the coleorhiza, 2) the region between the mature and the elongation zone, and 3) the elongation zone, several mm from the tip. Even non-clinostatted control roots showed some degree of curvature. The curvature occurred at random without any dorsiventrality. There was no difference in the osmotic concentration of the cell sap between the convex and the concave halves of any region. However, the convex, rapidly expanding side exhibited a higher extensibility of the cell wall in some regions, which appears to be a cause of the curvature. In order to understand the role of gravity in regulation of plant growth and development, we should clarify a series of events by which an automorphogenesis is induced under simulated microgravity conditions.  相似文献   

16.
ABSTRACT

Copper amine oxidase was shown to be able to catalyse the oxidative deamination of 2-, 3- and 4-Br-derivatives of benzylamine to the corresponding aldehydes, that all absorb at 250 nm. This change in the absorption spectrum made it possible to follow the enzyme reaction. 2-Br-benzylamine, 3-Br-benzylamine, and 4-Br-benzylamine showed Km values similar to benzylamine, but 3-Br-benzylamine showed a slower kc, which allows it to be a catalytically more efficient substrate. Under anaerobic conditions the native enzyme oxidised 1 equivalent of all Br-derivatives and released 1 equivalent of aldehyde per enzyme subunit. These findings demonstrate that, in anaerobic conditions, the enzyme can oxidise substrates with a single incomplete turnover. The possible involvement of the cofactor 6-hydroxydopa quinone and of a negatively charged residue in the oxidation of Br-benzylamines is discussed.  相似文献   

17.
Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 ± 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (di-nitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N,N-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips which is necessary for gravitropism.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - FC fusicoccin - Mes 2-(N-morpholino)ethanesulfonic acid The authors thank Phyllis Woolwine for drawing Fig. 1, Dr. Sarbjit Virk for assistance with total calcium measurements, Dr. Paul Sampson for statistical advice, and Michael Newton for developing the EM algorithm to analyze the time-series data. This work was supported by NASA grant NAGW-1394 and by a NASA Research Associateship to T.B. through NASA grant NAGW-70.  相似文献   

18.
Differential growth curvature rate (DGCR), defined as the spatial derivative of the tropic speed, was derived as a measure of curvature production in cylindrical organs. Its relation to usual concepts, such as curvature (kappa), rate of curvature (dkappa/dt) and differential growth profiles, was determined. A root gravitropism model, testing the hypothesis of one and two motors, exemplified its capabilities.DGCR was derived using cylindrical geometry and its meaning was obtained through a curvature conservation equation. The root gravitropism model was solved using a discrete difference method on a computer.DGCR described curvature production independently of growth, and was superior to dkappa/dt, which underestimated production. Moreover, DGCR profiles were able to differ between one and two motors, while profiles of kappa and dkappa/dt were not.The choice of the measure of curvature production has a large impact on experimental results, in particular when spatial and temporal patterns of differential growth need to be determined. DGCR was shown to fulfill the accuracy needed in the quantification of curvature production and should thus serve as a helpful tool for measurements.  相似文献   

19.
Ascochyta lentis is a fungal pathogen that causes ascochyta blight in the important grain legume species lentil, but little is known about the molecular mechanism of disease or host specificity. We employed a map‐based cloning approach using a biparental Alentis population to clone the gene AlAvr1‐1 that encodes avirulence towards the lentil cultivar PBA Hurricane XT. The mapping population was produced by mating Alentis isolate P94‐24, which is pathogenic on the cultivar Nipper and avirulent towards Hurricane, and the isolate AlKewell, which is pathogenic towards Hurricane but not Nipper. Using agroinfiltration, we found that AlAvr1‐1 from the isolate P94‐24 causes necrosis in Hurricane but not in Nipper. The homologous corresponding gene in AlKewell, AlAvr1‐2, encodes a protein with amino acid variation at 23 sites and four of these sites have been positively selected in the P94‐24 branch of the phylogeny. Loss of AlAvr1‐1 in a gene knockout experiment produced a P94‐24 mutant strain that is virulent on Hurricane. Deletion of AlAvr1‐2 in AlKewell led to reduced pathogenicity on Hurricane, suggesting that the gene may contribute to disease in Hurricane. Deletion of AlAvr1‐2 did not affect virulence for Nipper and AlAvr1‐2 is therefore not an avirulence gene for Nipper. We conclude that the hemibiotrophic pathogen Alentis has an avirulence effector, AlAvr1‐1, that triggers a hypersensitive resistance response in Hurricane. This is the first avirulence gene to be characterized in a legume pathogen from the Pleosporales and may help progress research on other damaging Ascochyta pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号