首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
鱼类趋化因子的研究进展   总被引:3,自引:0,他引:3  
趋化因子(Chemokine)是由多种细胞在致病因子刺激后分泌的一类低分子量的细胞因子,它们都具有激活和趋化白细胞的作用。趋化因子从结构上可分为四类:CC型、CXC型、CX3C型和C型;从功能上可分为两种类型:一类主要诱导白细胞到炎症部位;另一类主要是对肌体起免疫监控作用。目前,有关鱼类趋化因子的研究主要集中于CXC型和CC型两类,以及其在非特异性免疫中的作用。  相似文献   

3.
Vertebrate innate immunity is characterized by an effective immune surveillance apparatus, evolved to sense foreign structures, such as proteins or nucleic acids of invading microbes. RIG-I-like receptors (RLRs) are key sensors of viral RNA species in the host cell cytoplasm. Activation of RLRs in response to viral RNA triggers an antiviral defense program through the production of hundreds of antiviral effector proteins including cytokines, chemokines, and host restriction factors that directly interfere with distinct steps in the virus life cycle. To avoid premature or abnormal antiviral and proinflammatory responses, which could have harmful consequences for the host, the signaling activities of RLRs and their common adaptor molecule, MAVS, are delicately controlled by cell-intrinsic regulatory mechanisms. Furthermore, viruses have evolved multiple strategies to modulate RLR-MAVS signal transduction to escape from immune surveillance. Here, we summarize recent progress in our understanding of the regulation of RLR signaling through host factors and viral antagonistic proteins.  相似文献   

4.
Although fish immunology has progressed in the last few years, the contribution of the normal endogenous microbiota to the overall health status has been so far underestimated. In this context, the establishment of a normal or protective microbiota constitutes a key component to maintain good health, through competitive exclusion mechanisms, and has implications for the development and maturation of the immune system. The normal microbiota influences the innate immune system, which is of vital importance for the disease resistance of fish and is divided into physical barriers, humoral and cellular components. Innate humoral parameters include antimicrobial peptides, lysozyme, complement components, transferrin, pentraxins, lectins, antiproteases and natural antibodies, whereas nonspecific cytotoxic cells and phagocytes (monocytes/macrophages and neutrophils) constitute innate cellular immune effectors. Cytokines are an integral component of the adaptive and innate immune response, particularly IL-1 beta, interferon, tumor necrosis factor-alpha, transforming growth factor-beta and several chemokines regulate innate immunity. This review covers the innate immune mechanisms of protection against pathogens, in relation with the installation and composition of the normal endogenous microbiota in fish and its role on health. Knowledge of such interaction may offer novel and useful means designing adequate therapeutic strategies for disease prevention and treatment.  相似文献   

5.
Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.  相似文献   

6.
禽坦布苏病毒(Avian Tembusu virus,ATMUV)是近年来在我国新发现的一种病毒,可感染多种蛋禽,感染动物临床特征为采食量下降,产蛋量骤减,甚至停产,感染后期呈神经症状,如腿和翅膀麻痹、共济失调等。ATMUV在我国多个省市地区流行,给我国甚至世界养禽业带来严重影响。固有免疫是机体抵抗病原感染的第一道重要防线,是机体与生俱来的抵御病原微生物的能力。适应性免疫是机体免疫系统在抗原刺激下产生特异性抗体及免疫效应细胞的过程,以建立针对某种病原微生物的抵抗力,是机体免疫系统的重要部分。本文将从禽坦布苏病毒诱导宿主固有免疫应答和适应性免疫应答两方面进行综述。  相似文献   

7.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

8.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

9.
10.
Innate immunity has evolved as a first line defense against invading pathogens. Cellular and humoral elements of the innate immune system detect infectious parasites, initiate inflammatory resistance reactions and finally contribute to the elimination of the invaders. Repeated attacks by pathogenic agents induce adaptive responses of the innate immune system. Typically, reapplication of pathogens provokes tolerance of the affected organism. However, also stimulatory effects of primary infections on subsequent innate immune responses have been observed. The present overview touches an undervalued aspect in the innate immune response: Its pronounced dependency on pathogen load. In addition to localization and timing of innate immune responses the pathogen dose dependency might be considered as a “fifth dimension of innate immunity”. Experimental results and literature data are presented proposing a hormetic reaction pattern of innate immune cells depending on the dose of pathogens.  相似文献   

11.
The innate immune system is fundamental to the recognition of pathogens, triggering of immune-inflammatory response and host defense. Recent advance in this area has resulted in enormous amount of data, which are stored across different databases. Integrating relevant information from these different data sources is difficult because of their heterogeneous nature and dispersed physical location. We present here a single portal system, Cell Interaction Knowledgebase, with focus on the innate immunity. In particular, the knowledgebase houses comprehensive information on innate immune cells and cytokines/chemokines which are the principal mediators of communication among the immune cells. Currently the knowledgebase consists of extensive information on 2 major innate immune cell types (Macrophages and Dendritic cells) and 7 6 cytokines/chemokines for both human and mouse. In addition, intra-cellular molecular interactions and inter-cellular interactions involved in the innate immunity are curated and presented in an interactive and dynamic manner by animated pathways and query-driven cell-interaction map respectively. This is one of the first databases that houses extensive phenotypic, signaling, genomic, proteomic and knockout data on both the innate immune cells and their attendant cytokines/chemokines, and is aimed to evolve as a one-stop-shop for immunologists. The first version of database is available at http://cell-interaction.bii.a-star.edu.sg/.  相似文献   

12.
Innate immunity is an evolutionarily conserved self-defense mechanism against microbial infections. In Drosophila, induction of antimicrobial peptides is a major immune response that is regulated by two distinct signaling pathways called the IMD pathway and the Toll pathway, similar to the tumor necrosis factor-alpha signaling and Toll-like receptor/interleukin-1 signaling pathways, respectively, in mammals. In mammals, innate immunity interacts with adaptive immunity and has a key role in the regulated immune response. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Previously, based on the striking conservation between the mechanisms that regulate Drosophila immunity and human innate immunity, we established an ex vivo culture in which compounds acting on innate immunity can be evaluated using a reporter gene that reflects activation of the IMD pathway [Yajima et al. [Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. The Biochemical Journal 371(Pt 1), 205-210] Biochem J 371, 205-210]. Here, we combined the ex vivo culture with a reporter gene that reflects the heat shock response and demonstrated that the resulting systems are useful for screening compounds that act specifically on innate immunity, including mammalian innate immune responses. Identification of target molecules is essential for the development of more potent medicines with fewer side effects. In this study, we also established ex vivo systems capable of identifying target molecules of the identified compounds using targeted activation of the IMD pathway.  相似文献   

13.
肺表面活性物质相关蛋白A与肺部免疫防御研究进展   总被引:1,自引:0,他引:1  
肺表面活性物质相关蛋白A(SP—A)是一种高度保守的亲水性糖蛋白,属于C-型凝素家族成员,相对分子质量为29~36kDa。SP—A是肺部重要的天然免疫防御分子,在肺的局部防御和天然免疫反应中起着十分重要的作用。它不仅可调节局部免疫和炎症反应、调理吞噬作用,还可凝集病原微生物、影响趋化作用及促进杀菌作用等。  相似文献   

14.
Growing numbers of studies have shown that circular RNAs (circRNAs) can function as regulatory factors to regulate the innate immune response, cell proliferation, cell migration, and other important processes in mammals. However, the function and regulatory mechanism of circRNAs in lower vertebrates are still unclear. Here, we discovered a novel circRNA derived from the gene encoding Bcl-2-like protein 1 (BCL2L1) gene, named circBCL2L1, which was related to the innate immune responses in teleost fish. Results indicated that circBCL2L1 played essential roles in host antiviral immunity and antibacterial immunity. Our study also identified a microRNA, miR-30c-3-3p, which could inhibit the innate immune response by targeting inflammatory mediator TRAF6. And TRAF6 is a key signal transduction factor in innate immune response mediated by TLRs. Moreover, we also found that the antiviral and antibacterial effects inhibited by miR-30c-3-3p could be reversed with the expression of circBCL2L1. Our data revealed that circBCL2L1 functioned as a competing endogenous RNA (ceRNA) of TRAF6 by competing for binding with miR-30c-3-3p, leading to activation of the NF-κB/IRF3 inflammatory pathway and then enhancing the innate immune responses. Our results suggest that circRNAs can play an important role in the innate immune response of teleost fish.  相似文献   

15.
机体天然免疫系统拥有一系列可以探测和抵制微生物侵袭的机制.目前,关于病原RNA的细胞内识别机制有了较为深入的研究和相关报道,但细胞内病原DNA的识别和相应的天然免疫应答机制仍未完全被揭示.阐明上述机制有助于了解和治疗一系列微生物感染相关的疾病,包括病毒和细菌感染类疾病、病毒相关的肿瘤、自身免疫性疾病等.近年来,细胞内多个充当"DNA传感器"的分子和干扰素调节分子被认为在细胞质DNA诱导宿主天然免疫反应过程中起着关键性调节作用.综述了对细胞内病原DNA的主要识别分子、信号通路以及相关的天然免疫调控机制.  相似文献   

16.
Central to the conceptual basis of ecological immunity is the notion that immune effector systems are costly to produce, run, and/or maintain. Using the mealworm beetle, Tenebrio molitor, as a model we investigated two aspects of the costs of innate immunity. We conducted an experiment designed to identify the cost of an induced immune response, and the cost of constitutive investment in immunity, as well as potential interactions. The immune traits under consideration were the encapsulation response and prophylactic cuticular melanization, which are mechanistically linked by the melanin-producing phenoloxidase cascade. If immunity is costly, we predicted reduced longevity and/or fecundity as a consequence of investment in either immune trait. We found a measurable longevity cost associated with producing an inducible immune response (encapsulation). In contrast to other studies, this cost was expressed under ad libitum feeding conditions. We found no measurable costs for constitutive investment in immunity (prophylactic investment in cuticular colour).  相似文献   

17.
The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response.  相似文献   

18.
NOD1和NOD2是新发现的一类参与天然免疫的胞浆蛋白质家族—核苷酸结合寡聚域样受体(the nucleotide bindingolig omerization domain-like receptor,NLRs)中的两个重要蛋白受体,它们通过识别外源病原菌的模式抗原分子而激活NF-κB等核转录因子,启动相关细胞因子的基因表达,释放炎性因子和抗菌肽等,其介导的信号通路在宿主抵御病原体感染的天然免疫中发挥着重要作用。  相似文献   

19.
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims, and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.  相似文献   

20.
Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号