首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In order to examine the cyclic nucleotides (cGMP) role in carcinoma growth and invasivity. We analyzed two cell lines, LSHT29 and 17GT, and tissues in patients with carcinoma and malignant tissues with (N+) and without (N?) lymph node metastases. Higher cGMP levels in pathological samples suggest a strong correlation between intracellular cGMP concentration and carcinoma progression.  相似文献   

2.
cAMP- and cGMP-dependent protein kinases are homologous proteins and are predicted to exhibit very similar three-dimensional structures. Their cyclic nucleotide binding domains share a high degree of amino acid sequence identity. cAMP- and cGMP-dependent protein kinases are activated relatively specifically by cAMP and cGMP, respectively; and a single alanine-threonine difference between cAMP- and cGMP-binding domains partially accounts for this specificity. Thus, it would be expected that cAMP and cGMP mediate separate physiological effects. However, owing in part to the lack of absolute specificity of either enzyme and to the relatively high level of cAMP or cGMP in certain tissues, it is also possible that either cyclic nucleotide could cross-activate the other kinase. Increases in either cAMP or cGMP cause pig coronary artery relaxation. However, only cGMP-dependent protein kinase specific cyclic nucleotide analogues are very effective in causing relaxation, and cAMP elevation in arteries treated with isoproterenol or forskolin activates cGMP-dependent protein kinase, in addition to cAMP-dependent protein kinase. Conversely, increases in either cAMP or cGMP cause Cl- secretion in T-84 colon carcinoma cells, and the cGMP level in T-84 cells can be elevated sufficiently by bacterial enterotoxin to activate cAMP-dependent protein kinase. These results imply specific regulation of cAMP- and cGMP-dependent protein kinases by the respective cyclic nucleotides, but either cyclic nucleotide is able to cross-activate the other kinase in certain tissues.  相似文献   

3.
Our main objective was to test the efficacy of 6-anilino-5,8-quinolinedione (LY83583) in vivo, a putative inhibitor of cyclic guanosine 3',5'-monophosphate (cGMP) production. If the drug proved capable of lowering plasma, vascular, and kidney levels of cGMP and of inhibiting the hypotensive effect of sodium nitroprusside and methacholine, then LY83583 could be of potential use in exploring the contribution of cGMP to cardiovascular and renal physiology. We found that when administered to trained conscious rats, LY83583 (1-mg/kg bolus, followed by a 2-hr infusion of 3 mg/kg.hr) decreased plasma cGMP concentration by 36% (P less than 0.01). Doubling the dosage of drug (2-mg/kg bolus, 6 mg/kg.hr) decreased plasma cGMP by 46% (P less than 0.05). We next measured tissue levels of cGMP ex vivo from rats that had received LY83583 or vehicle for 2 hr. The cGMP content of aortic segments when LY83583 was infused at the low dose, or renal cortical tissue when LY83583 was infused at both doses, was not significantly different from the cGMP content of tissue from rats that had received vehicle. LY83583 in doses up to 10-mg/kg bolus, followed by 6 mg/kg.hr infusion also failed to attenuate the hypotensive response to sodium nitroprusside or methacholine in conscious rats. Last, we tested whether, in our hands, LY83583 could reduce cGMP of aortic segments and kidney cortical slices in vitro. We found that after 10 min of incubation, 10(-5) M LY83583 decreased intracellular cGMP by approximately 65% and 50% in aortic and kidney tissues, respectively. In order to ascertain whether LY83583 lowered cGMP by stimulating phosphodiesterase, we incubated tissues with 10(-4) M 3-isobutyl-1-methylxanthine to inhibit the enzyme. In the presence of 3-isobutyl-1-methylxanthine LY83583 still exerted an inhibitory effect on cGMP production by aortic and kidney tissues. In conclusion, although LY83583 is a useful agent to lower renal and vascular tissues levels of cGMP in vitro, its efficacy in vivo seems doubtful.  相似文献   

4.
Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were assayed in ascitic fluid from 27 patients with ovarian carcinoma and 23 patients with liver cirrhosis. The value of these cyclic nucleotides was correlated with standard methods for the clinical evaluation of tumors. No change in the cGMP levels was found in either of these groups. The cAMP content, however, was increased in 23 of the 27 cases of ovarian carcinoma. The high cAMP level was correlated with the cytological findings in only 13 (48.1%) of these cases.  相似文献   

5.
Increases inguanosine 3',5'-cyclic monophosphate (cGMP) induced bynitric oxide (NO), nitrovasodilators, and atrial peptides correlatewith relaxation of vascular smooth muscle. Relaxation of myometrialsmooth muscle by increases in cGMP, however, has required unusuallyhigh concentrations of the cyclic nucleotide. We tested the hypothesisthat the sensitivity of myometrium to relaxation by cGMP is increasedduring pregnancy. Aortic smooth muscle was more sensitive to relaxationby cGMP than myometrial tissues, and, contrary to our hypothesis,myometrium from pregnant rats was least sensitive. Although levels ofcGMP were elevated after treatment with the NO donor,S-nitroso-N-acetylpenicillamine, relaxation of myometrial tissues obtained from pregnant rats occurred only at extraordinarily high concentrations. The levels ofcGMP-dependent protein kinase (PKG) were significantly decreased inmyometrium from pregnant rats compared with myometrium from nonpregnantcycling animals or aortic smooth muscle. Administration of estradiol to ovariectomized rats increased myometrial PKG expression, andprogesterone antagonized this response. We conclude that1) myometrial tissues from pregnantrats are not sensitive to relaxation by cGMP and 2) this insensitivity to cGMP isaccompanied by progesterone-mediated decreases in the level of PKGexpression.

  相似文献   

6.
As cGMP hydrolyzing cyclic nucleotide phosphodiesterases (PDEs) have diverse regulatory and catalytic properties, the specific cGMP PDEs a cell expresses will determine the duration and intensity of a cGMP signal. This, in turn, results in different cellular responses between cell types and tissues. Therefore, identifying which cGMP PDEs are expressed in different tissues and cell types could increase our understanding of physiological and pathological processes. The brain is one area where large numbers of diverse cGMP PDEs are expressed in specific regions and cell types. A case in point is differential expression of cGMP PDEs in neuronal cells. For example, we have recently found that PDE5 is expressed in all Purkinje neurons while PDE1B is expressed in only a subset of these neurons. The expression of PDE2 has also been found to be selective for discrete populations of neurons. Another example of selective cGMP PDE expression is seen with cytokine-induced differentiation of monocytes to macrophages. We have recently discovered that monocyte differentiation with the cytokine macrophage colony-stimulating factor (M-CSF) causes an upregulation of PDE2 and a small increase in PDE1B while granulocyte-macrophage colony-stimulating factor (GM-CSF) causes a large increase in PDE1B but a decrease in PDE2. These same cytokines can influence the phenotype of microglial cells and are likely to affect their expression of cGMP PDEs. In this report, we present recent results from our laboratory and review earlier findings illustrating the concept of highly specific expression of cGMP PDEs and discuss how this may be important for understanding brain function and dysfunction.  相似文献   

7.
Changes have been revealed in the function of cyclic GMP system of thymus and liver of irradiated (8 Gy) mice. In the thymus the cGMP level increased during the first 60 min following irradiation. In the liver the concentration of cGMP exhibited two peaks: 30 min and 24 hr after irradiation. The changes observed in the cGMP level are connected with the increased guanylate cyclase activity of thymocytes and liver of irradiated mice and, less likely, with changes in the activity of cGMP phosphodiesterase of these tissues.  相似文献   

8.
Cyclic 3', 5'-guanosine monophosphate (cGMP) was measured at eight stages of forelimb regeneration in adult newts and compared with the cGMP levels of non-regenerating control limbs. There was a significant increase in cGMP content during dedifferentiation followed by a sharp decrease to minimal levels at the cone stage. A second smaller increase in cGMP occurred between the cone stage and mid-differentiation, followed by a decrease to relatively constant levels approaching control values as differentiation progressed. The changes in cGMP during dedifferentiation and during the period of highest cell proliferation indicate that cGMP may play a role in these processes. The smaller increases in cGMP levels during differentiation may reflect a reduced rate of cell division in the differentiating tissues.  相似文献   

9.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

10.
The cyclic nucleotide cGMP has been shown to play important roles in plant development and responses to abiotic and biotic stress. To date, the techniques that are available to measure cGMP in plants are limited by low spatial and temporal resolution. In addition, tissue destruction is necessary. To circumvent these drawbacks we have used the δ-FlincG fluorescent protein to create an endogenous cGMP sensor that can report cellular cGMP levels with high resolution in time and space in living plant cells. δ-FlincG in transient and stably expressing cells shows a dissociation constant for cGMP of around 200 nm giving it a dynamic range of around 20-2000 nm. Stimuli that were previously shown to alter cGMP in plant cells (nitric oxide and gibberrellic acid) evoked pronounced fluorescence signals in single cells and in root tissues, providing evidence that δ-FlincG reports changes in cellular cGMP in a physiologically relevant context.  相似文献   

11.
In the rat, the effects of cold acclimation on the content of cyclic AMP and cyclic GMP were studied in various tissues concerned with increased heat production: brown and white adipose tissue, liver, heart, diaphragm, lungs, adrenals, thyroid. Significant cold-induced variations were observed only in those tissues in which the lipid metabolism is enhanced by cold (adipose tissues and liver). In these tissues, decrease in the cAMP/cGMP ratio indicates a role of cGMP in the regulation of the increased lipid metabolism.  相似文献   

12.
The concentration of cGMP in the tissues of oat (Avena sativaL.) seedlings was shown to depend on seedling age and the light regime of their growth. The level of cGMP in the etiolated seedlings was lower than in the green ones and declined with seedling age. Red and blue light recognized by phytochrome and cryptochrome, respectively, affected the cGMP content. The effectors of cGMP metabolism, guanylin, protoporphyrin IX, and zaprinast, elevated the cGMP content in tissue extracts from oat seedlings.  相似文献   

13.
Long noncoding RNAs (lncRNAs) play a crucial role in several malignances, involving nasopharyngeal carcinoma (NPC), a heterogeneous disease. This study investigated mechanism of serine/arginine repetitive matrix protein 2-alternative splicing (SRRM2-AS) in NPC cell proliferation, differentiation, and angiogenesis. Initially, differentially expressed lncRNAs were screened out via microarray analysis. Vascular endothelial growth factor (VEGF) protein positive rate and microvessel density (MVD) were determined in NPC and adjacent tissues. NPC CNE-2 cells were treated with a series of vector and small interfering RNA to explore the effect of SRRM2-AS in NPC. The target relationship between myosin light chain kinase (MYLK) and SRRM2-AS was verified. Levels of SRRM2-AS, MYLK, cGMP, PKG, VEGF, PCNA, Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase 3 were determined after transfection. Finally, the effect of SRRM2-AS on cell proliferation, colony formation, angiogenesis, cell cycle, and apoptosis in NPC was evaluated. SRRM2-AS was highly expressed and MYLK was poorly expressed in NPC tissues. VEGF protein positive rate and MVD were elevated in NPC tissues. MYLK was confirmed to be a target gene of SRRM2-AS. Silencing of SRRM2-AS elevated levels of MYLK, cGMP, PKG, Bax, and Caspase 3, but decreased levels of VEGF, PCNA, Ki-67, and Bcl-2. Especially, silencing of SRRM2-AS suppressed cell proliferation, colony formation and angiogenesis, blocked cell cycle, and enhanced cell apoptosis in NPC. Our results suggested that silencing of SRRM2-AS protected against angiogenesis of NPC cells by upregulating MYLK and activating the cGMP-PKG signaling pathway, which provides a new target for NPC treatment.  相似文献   

14.
Published values of adenosine 3′,5′-monophosphate (cAMP) and guanosine 3′,5′-monophosphate (cGMP) in gastrointestinal tissues and fluids have varied depending upon extraction and purification methods and assay procedures. Cyclic nucleotide levels in a variety of gastrointestinal tissues and fluids from several animal species were measured by the Gilman protein kinase assay for cAMP, and by a radioimmunoassay for cAMP and cGMP. The neutral alumina/Dowex-1-formate column was the most accurate for the preparation of bile and gastric juice samples for the measurement of cAMP and cGMP, as verifled by the use of column blanks, spiked samples, phosphodiesterase treatment, and serial sample dilution. Tissue samples gave consistent results regardless of the various column procedures employed.  相似文献   

15.
The present study compares the tissue distribution of glyceryl trinitrate (GTN) in plasma, heart, brain, aortic tissue, and adipose tissue from GTN tolerant and GTN nontolerant rats at various time points. Furthermore, the cGMP levels in brain, heart, and aortic tissue were studied at various time points as well as the concentration-effect relationship for GTN in aorta isolated at different time points after the last exposure to GTN. Concentrations of GTN were found to be higher in all tissues studied as compared with plasma, and the concentrations of GTN were higher in tissues from tolerant rats as compared with nontolerant rats, except for aortic tissue. Concentration-effect curves obtained in vitro showed that aortic smooth muscle was still tolerant 24 h after the last dose of GTN. The cGMP level in brain was significantly increased by 40% 2 h after a single dose of GTN (50 mg/kg) and in aortic tissue by 50% at 15 min and at 2 h after a single dose of GTN (50 mg/kg). There was no effect on cGMP in brain, while an increase was seen in aortic tissue 15 min after the last dose in tolerant animals. No change in cGMP level was seen in heart neither in nontolerant nor in tolerant animals at 15 min and at 2 h. No effect on cGMP levels in brain, heart, and aortic tissue was seen 8, 16, and 24 h after exposure to GTN in either tolerant or nontolerant rats. In conclusion, GTN does not involve the cGMP system in heart, and tolerance development caused a less pronounced GTN-induced cGMP increase in aortic tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The transmembrane regulation of cGMP accumulation, which is poorly understood, was studied using isolated rat pinealocytes. It was found for the first time that VIP stimulates cGMP accumulation several-fold. This stimulation was amplified by phenylephrine acting via alpha 1-adrenoceptors, resulting in a greater than 100-fold increase in cGMP accumulation. These results raise the possibility that cGMP accumulation in other tissues might be regulated by VIP, and that the stimulating effects of VIP might be markedly amplified by catecholamine transmitters in these tissues. It is also possible that other pairs of receptors might control large changes in cGMP in the central nervous system through parallel mechanisms.  相似文献   

17.
Involvement of cGMP in cellular melatonin responses.   总被引:1,自引:0,他引:1  
Melatonin can enhance and suppress constitutive protein secretion from murine melanoma M2R cells in vitro in a cholera-toxin (CTX) sensitive process. In a number of tissues melatonin has been shown to modulate cGMP levels. The involvement of cGMP in melatonin responses in the melanoma cells was investigated. The effects of melatonin on melanoma cells cGMP and cGMP-phosphodiesterase activity and the effects of cGMP analogs on the melatonin-mediated modulation of protein secretion were studied. Melatonin reduced cGMP levels in the melanoma cells. CTX treatment had a similar and non-additive effect. The effects of melatonin on protein secretion were abrogated by activation of cGMP-dependent protein kinases. In addition, melatonin inhibited cGMP phosphodiesterase activity in these cells. The data presented indicate that inhibition of cGMP via a CTX sensitive G protein may be a major signal transduction pathway used by melatonin in melanoma cells.  相似文献   

18.
The cyclic guanomonophosphate (cGMP) dependent protein kinase (PKG) plays an important role in the food related behaviours of several insect species. Here we report the influence of cGMP dependent PKG on prey consumption of adult predatory coccinellid, Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae). The oral cGMP treatment (which increases PKG activity) enhanced the feeding potential of C. montrouzieri. The good foragers responded more positively to the cGMP treatment compared to the poor foragers. The cGMP levels estimated through ELISA were significantly (P?<?0.001) high in the digestive tissues of unfed as well as cGMP treated C. montrouzieri compared to normal fed beetles. This finding suggests that cGMP is involved in the higher feeding rates of C. montrouzieri and the partial foraging gene (~455 bp) which encodes the cGMP dependent PKG was isolated from genomic DNA of C. montrouzieri using gene specific primers.  相似文献   

19.
cGMP and cAMP levels were measured in the duodenal mucosa of 12-day-old chicks that had been raised from hatching in vitamin D-depleting conditions and at the time of use were moderately hypocalcemic. After administration of a dose (250 ng) of 1,25-dihydroxycholecalciferol, the cGMP levels increased about twofold in 2–3 hr and returned to control levels between 4 and 6 hr. Our data suggest that 1,25-dihydroxycholecalciferol behaves like other steroid hormones which induce an early rise in cGMP in their respective target tissues.  相似文献   

20.
The levels of guanosine 3′, 5′-cyclic monophosphate (cGMP) were measured in the rat adrenal cortex after administration of a single dose of either 17β-estradiol or testosterone. Young immature rats received 10 μg 17β-estradiol (females) or 100 μg testosterone (males). After testosterone administration, cGMP levels progressively rose to about 150 per cent of the control values after 4–6 hrs, and remained elevated until at least 9 hr. Administration of 17β-estradiol resulted in a similar increase in cGMP, which began at 2 hr and persisted until 9 hr, reaching levels of about 180 per cent of the controls. Our data are further evidence of general effect of steroid hormones on cGMP in their target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号