首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Forty-one strains of non-sporulating sulfate-reducing bacteria were isolated from estuaries, deep sea and other saline environments. Their salinity requirements, utilization of significant carbon compounds, resistance against growth inhibition by Hibitane, optimal growth temperatures and growth temperature ranges were studied. The results include data on strains isolated from the Red Sea hot brine deep area. Basing on the determined characteristics the strains were identified as Desulfovibrio desulfuricans, D. vulgaris, D. salexigens, and D. desulfuricans var. aestuarii.  相似文献   

2.
Nutritional and environmental conditions were characterized for a batch culture of the marine dinoflagellate Alexandrium tamarense HK9301 isolated from the South China Sea for its growth (cells ml−1), cellular toxin content (Qt in fmol cell−1) and toxin composition (mol%). Under a nutrient replete condition, Qt increased with cell growth and peaked at the late stationary phase. Toxin content increased with the nitrate concentration in the culture while it reached a maximum at 5 μM phosphate. When nitrate was replaced with ammonia, Qt decreased by 4.5-fold. Salinity and light intensity were important factors affecting Qt. The latter increased two-fold over the range of salinity from 15 to 30‰, while decreased 38% as light intensity increased from 80 to 220 μE m−2 s−1. Toxin composition varied with growth phase and culture conditions. In nutrient replete cultures, toxin composition varied greatly in the early growth phase (first 3 days) and then C1/C2, C3/C4 and GTX1 remained relatively constant while GTX4 increased from 32 to 46% and GTX5 decreased from 28 to 15%. In general, the composition of GTXs was affected in a much greater extent than C toxins by changes in nutrient conditions, salinity and light intensity. This is especially true with GTX4 and GTX5. These data indicate that the cellular toxin content and toxin composition of A. tamarense HK9301 are not constant, but that they vary with growth phase and culture conditions. Use of toxin composition to identify a toxigenic marine dinoflagellate is not always valid. The data also reveal that high salinity and low light intensity, together with high nitrate and low phosphate concentrations, would favor toxin production by this species.  相似文献   

3.
The toxic dinoflagellate Protoceratium reticulatum (Claparède & Lachmann) Buetschli is recurrently present in the Adriatic sea. It is the producing organism of yessotoxin (YTX) and some of its analogues and thus its presence in seawater often results in shellfish farm closure for long periods. However, molluscs become highly toxic also at the presence of low cell concentrations, due to the high YTX content present in most algal strains. As no data were available on the environmental conditions favouring growth and YTX production by Adriatic P. reticulatum strains, in the present work, we investigated the effect of nutrient limitation, salinity and temperature on growth and YTX content in P. reticulatum cultures. Liquid chromatography–mass spectrometry (LC–MS) analyses were carried out to determine YTX production as well as the difference between the YTX amount retained in cells and that released in growth medium, in order to relate cell content to excretion mechanisms. The toxin content was determined in cells collected at the stationary phase, since both toxin production and release were found to be higher in this growth stage than in the exponential phase. As for nutrient-effect, a severe P-limitation strongly affected cell growth and favoured toxin accumulation, as consequences of both impaired cell division and lower toxin release. N-limited cultures, on the contrary, had a toxin content similar to controls and the highest percentage of release. P. reticulatum was confirmed to be tolerant towards salinity changes as it could grow at salinity values in the range of 22–42. The highest YTX production was observed at intermediate salinity values (32) whereas toxin release, expressed as percentage of the total amount produced, decreased as salinity increased. P. reticulatum growth was impaired in cultures kept at 26 °C in respect to those grown at 16 and 20 °C. YTX release decreased as temperature increased; however, cells kept at 26 °C displayed a very high YTX content. The environmental implications of these physiological behaviours highlight that farmed molluscs can become less toxic in colder waters at lower salinity values.  相似文献   

4.
Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present.Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C.The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702.  相似文献   

5.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

6.
The salinity tolerance of naked amoebae collected from sites ranging from ca. 0‰ to 160‰ were compared in laboratory experiments. Amoebae were collected from hypersaline ponds around the perimeter of the Salton Sea, California, where salinities averaged 160‰, and directly from the shoreline waters of the Sea where salinities were generally between 44 and 48‰. Naked amoebae were also collected from the intertidal zone of a Florida beach, a habitat subject (on occasion) to salinity fluctuations within the range 6–85‰. From these combined sites, 6 clones of amoebae were isolated for salinity tolerance experiments (2 marine beach isolates, 2 Salton Sea isolates, and 2 hypersaline pond isolates). A seventh clone, Acanthamoeba polyphaga, a common freshwater/soil amoeba, was obtained from a Culture Collection. Laboratory experiments compared the effects of gradually changing culture salinity versus no salinity acclimatization. Growth rate and culture yield were used as indices of effect. Generally, amoebae were tolerant over a wide range of salinity conditions (in terms of growth and yield) and were not markedly influenced by pre-conditioning to salinity changes throughout the experiments. Overall, the freshwater amoeba Acanthamoeba grew between 0 and 12‰, the marine clones grew in the range of 2–120‰, and the Salton Sea clones reproduced between 0 and 138 ‰. The hypersaline clones were the most resilient and grew between 0 and 270‰ salt. The survival and activity of large populations of naked amoebae in sites subject to salinity fluctuations suggest that they should be considered in future studies to better understand their, as yet, undefined ecological role.  相似文献   

7.
Two Caribbean strains (1651 and 1655) of the ciguatera-causing dinoflagellate Gambierdiscus toxicus were grown in xenic, batch culture under defined, measured nutrient conditions with nitrate, ammonium, urea, a mix of free amino acids (FAA), or putrescine as the nitrogen source. Cultures were maintained at 27 °C, salinity 35, 110 μmol m−2 s−1 (12 h:12 h light:dark cycle) on L2 medium at an initial nitrogen concentration of 50 μM N. Toxicity was determined using a ouabain/veratridine-dependent cytotoxicity assay (N2A assay) standardized to a ciguatoxin standard. Nitrate, ammonium, FAA, and putrescine supported growth, but urea did not. The appearance of ammonium in the organic nitrogen cultures indicated that G. toxicus and/or associated bacteria remineralized the available organic nitrogen. Both strains were exposed to nitrogen-limiting conditions as evidenced by chlorophyll a content per cell, nitrogen content, and nitrogen (N) to phosphorus (P) (N:P) ratio significantly declining once nitrogen was no longer available in the medium and cells entered stationary phase. Strain 1651 grew significantly faster than strain 1655 when nitrate, FAA, and putrescine was the nitrogen source, but not ammonium. Nitrogen source had no effect on growth rate (0.14 d−1) in strain 1651. The growth rate of strain 1655 (0.10–0.13 d−1) was significantly faster on ammonium than the other nitrogen sources. Strain 1655 was significantly more toxic (10-fold) than strain 1651 except when growing on ammonium at exponential phase. Toxicity ranged from 1.3 to 8.7 fg C-CTX1-Eq cell−1 in strain 1651 and from 30.7 to 54.3 fg C-CTX1-Eq cell−1 in strain 1655. Nitrogen source had no significant affect on toxicity. Toxicity was greater in stationary versus exponential phase cells for strain 1651 when grown on nitrate and strain 1655 regardless of nitrogen source. The difference in toxicity between growth phases may result from an increase in ciguatoxin and/or maitotoxin. Our results suggest that some strains of G. toxicus when associated with bacteria are able to take advantage of organic as well as inorganic nitrogen sources on short time scales to support future growth. The uncoupling of total nitrogen and phosphorus pools from conditions in the water column suggest that instantaneous growth rates can be supported by nutrients acquired hours to days earlier.  相似文献   

8.
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer “adaptation time” for the flagellate communities toward the large prey size offered.  相似文献   

9.
The diatomsChaetoceros sp.,Skeletonema costatum andThalassiosira pseudonana were grown with different irradiances of white and of blue-green light, and with a mixture of blue-green plus 6.5 mol m–2 s–1 of white light. Exponential growth rates were higher in mixed blue for the first two, whileT. pseudonana grew faster in white light but, in all cases, mean cell division rates did not differ with increasing irradiances. Harvesting in stationary, rather than in late exponential growth phase, resulted in higher protein contents forChaetoceros sp. andS. costatum, but forT. pseudonana the highest value was in the exponential phase. The highest protein content was in blue-green light for the three species and it increased with irradiance. As to other fractions, the three strains showed different responses, related to quality and quantity, as well as to culture ages.  相似文献   

10.
Differences between clones of the diatom Cylindrotheca fusiformi were studied with respect to growth rate, total lipid content and fatty acid composition. Sixty clones were isolated and cultivated under batch conditions. All clones were grown under identical conditions (temperature 22±1°C, light intensity 100 μmol photon m−2 s−1, salinity 28, F/2 medium) and were harvested in the late exponential growth phase for lipid and fatty acid analysis. The results show a wide variation in growth, total lipid content and fatty acid profiles among clones (p<0.05). The major fatty acids in the 60 clones were 14:0 (4.6–9.1%), 16:0 (18.2–32.0%), 16:1n-7 (21.6–33.1%), 20:4n-6 (4.1–13.5%) and 20:5n-3 (6.2–17.2%), with the highest proportion of 20:4n-6 in clone CF13 (13.5%), and the highest proportion of 20:5n-3 in clone CF5 (17.2%). The results support the view that some microalgal fatty acid variation is not restricted to interspecific variation and external factors, but also varies from clone to clone within the same species.  相似文献   

11.
A bloom of the unicellular green alga Dunaliella parva (up to 15 000 cells m1–1) developed in the upper 5 m of the water column of the Dead Sea in May-June 1992. This was the first mass development of Dunaliella observed in the lake since 1980, when another bloom was reported (up to 8800 cells m1–1). For a bloom of Dunaliella to develop in the Dead Sea, two conditions must be fulfilled: the salinity of the upper water layers must become sufficiently low as a result of dilution with rain floods, and phosphate must be available. During the period 1983–1991 the lake was holomictic, hardly any dilution with rainwater occurred, and no Dunaliella cells were observed. Heavy rain floods in the winter of 1991–1992 caused a new stratification, in which the upper 5 m of the water column became diluted to about 70% of their former salinity. Measurements of the isotopic composition of inorganic carbon in the upper water layer during the bloom (13C = 5.1) indicate a strong fractionation when compared with the estimated –3.4 prior to the bloom. The particulate organic carbon formed was highly enriched in light carbon isotopes ( 13 C = – 13.5). The algal bloom rapidly declined during the months June–July, probably as a result of the formation of resting stages, which sank to the bloom. A smaller secondary bloom (up to 1850 cells m1–1) developed between 6 and 10 m depth at the end of the summer. Salinity values at this deep chlorophyll maximum were much beyond those conductive for the growth of Dunaliella, and the factors responsible for the development of this bloom are still unclear.  相似文献   

12.
When introduced to new ecosystems, species'' populations often grow immediately postrelease. Some introduced species, however, maintain a low population size for years or decades before sudden, rapid population growth is observed. Because exponential population growth always starts slowly, it can be difficult to distinguish species experiencing the early phases of slow exponential population growth (inherent lags) from those with actively delayed growth rates (prolonged lags). Introduced ungulates provide an excellent system in which to examine lags, because some introduced ungulate populations have demonstrated rapid population growth immediately postintroduction, while others have not. Using studies from the literature, we investigated which exotic ungulate species and populations (n = 36) showed prolonged population growth lags by comparing the doubling time of real ungulate populations to those predicted from exponential growth models for theoretical populations. Having identified the specific populations that displayed prolonged lags, we examined the impacts of several environmental and biological variables likely to influence the length of lag period. We found that seventeen populations (47%) showed significant prolonged population growth lags. We could not, however, determine the specific factors that contributed to the length of these lag phases, suggesting that these ungulate populations'' growth is idiosyncratic and difficult to predict. Introduced species that exhibit delayed growth should be closely monitored by managers, who must be proactive in controlling their growth to minimize the impact such populations may have on their environment.  相似文献   

13.
The Bothnian Sea in the northerly part of the Baltic Sea is a geologically recent brackish‐water environment, and rapid speciation is occurring in the algal community of the Bothnian Sea. We measured low‐temperature fluorescence emission spectra from the Bothnian Sea and the Norwegian Sea ecotypes of Fucus vesiculosus L., a marine macroalga widespread in the Bothnian Sea. Powdered, frozen thallus was used to obtain undistorted emission spectra. The spectra were compared with spectra measured from the newly identified species Fucus radicans Bergström et L. Kautsky, which is a close relative of F. vesiculosus and endemic to the Bothnian Sea. The spectrum of variable fluorescence was used to identify fluorescence peaks originating in PSI and PSII in this chl c–containing alga. The spectra revealed much higher PSII emission, compared to PSI emission, in the Bothnian Sea ecotype of F. vesiculosus than in F. radicans or in the Norwegian Sea ecotype of F. vesiculosus. The results suggest that more light‐harvesting chl a/c proteins serve PSII in the Bothnian Sea ecotype of F. vesiculosus than in the two other algal strains. Treatment of the Bothnian Sea ecotype of F. vesiculosus in high salinity (10, 20, and 35 practical salinity units) for 1 week did not lead to spectral changes, indicating that the measured features of the Bothnian Sea F. vesiculosus are stable and not simply a direct result of exposure to low salinity.  相似文献   

14.
A mutant of Dunaliella tertiolecta produced by treatment with methyl nitrosoguanidine and designated HL25/8, grew more slowly than the parent strain under all experimental conditions and was conspicuously less tolerant of NaCl. Total photosynthetic activity (C-fixation and O2 evolution) was less in HL25/8 than in the parent strain and was affected differently by [NaCl] in the two strains. Various growth characteristics indicated that the mutant had a greater need than the parent strain for CO2 as distinct from HCO 3 as a source of carbon. Gaseous CO2 extended the range of salt tolerance of the mutant. For example, HL25/8 could not sustain growth at 1.02 M NaCl in a conventional buffered medium containing bicarbonate as the sole carbon source but could do so if the medium were sparged with a CO2/air mixture. The mutant strain has a lower activity of carbonic anhydrase on the cell surface than the parent D. tertiolecta. Moreover, the two strains differ sharply in the responses of their surface carbonic anhydrase activity to salinity of the growth medium. Increasing sodium chloride concentration above 0.17 M raised activity of the enzyme in the parent strain but decreased it in HL25/8. We conclude that the low activity of carbonic anhydrase and its response to salinity can largely, but perhaps not fully, explain the diminished salt tolerance of the mutant. A plate counting method applicable to Dunaliella is described.  相似文献   

15.
Abstract We established a budget of organic carbon utilization of a starved heterotrophic nanoflagellate, Pteridomonas danica, incubated in batch cultures with Escherichia coli as model prey. The cultures were sampled periodically for biomass determinations and total organic carbon dynamics: total organic carbon, total organic carbon <1 μm, and dissolved organic carbon (DOC, <0.2 μm). During the 22 h incubation period, P. danica underwent biovolume variations of 3.2-fold. Gross growth efficiency was 22% and net growth efficiency 40%. P. danica respired 33% and egested 44% of the ingested E. coli carbon during lag and exponential growth phases. The form of the organic carbon egested varied. Of the total ingested carbon, 9% was egested in the form of DOC and occurred mainly during the exponential growth phase; 35% was egested in the form of particulate organic carbon (POC), ranging in size from 0.2 to 1 μm, and took place during the lag phase. P. danica could have reingested as much of 58% of this previously produced POC during the exponential growth phase as food scarcity increased. We concluded that POC egestion by flagellates could represent a significant source of submicrometric particles and colloidal organic matter. In addition, flagellate reingestion of egested POC could play a nonnegligible role in the microbial food web. Finally, the methodology reported in this study has proved to be a useful tool in the study of carbon metabolism in aquatic microorganisms. Received: 31 July 1998; Accepted: 2 March 1999  相似文献   

16.
Upon carbon starvation the -carotene content of Phycomyces mycelium grown on minimal agar medium disappears with a time lag of about 90 min and a T1/2 of 68–75 min. If continuous light is given 2 h after starvation, there is an increase in -carotene content with respect to the dark control. This increase has a time lag of 20–25 min. The fluence rate-response curve of wt is biphasic and two mutants in the gene madA (madA7, madA35) and in the gene madB (madB101, madB104) have higher thresholds than wt; madB mutants are blinder than madA mutants. Only blue light is effective and we suggest that it has an effect solely on the catabolism of -carotene.Abbreviations D dark - L light - wt wild type  相似文献   

17.
Changes in polyol production and the intracellular amino acid pool were followed during the growth cycle of Debaryomyces hansenii in 4 mM and 2.7 M NaCl media. The intracellular levels of polyols were markedly enhanced by high salinity, the dominant solutes being glycerol in log phase cells and arabinitol in stationary phase cells. At low salinity arabinitol was the most prominent intracellular solute throughout the growth cycle. There were no major changes in the composition of the total amino acid pool with changes in cultural salinity. The amount of total free amino acids related to cell dry weight was 15–50% lower in cells cultured in 2.7 M NaCl as compared to 4 mM NaCl media.After subtraction of contributions from intracellular polyols the calculated cellular C/N ratio was found to be unaffected by cultural age and salinity during the late log and early stationary phase. On prolonged incubation of stationary phase cells, this ratio decreased, particularly at high salinity. The sensitivity of cells towards exposure to high salinity was measured in terms of the length of the lag phase after transference to 2.7 M NaCl media. This lag phase decreased with increasing intracellular polyol concentrations. At a given polyol content, stationary phase cells were considerably less sensitive than were log phase cells.When cultured at high salinity the mutant strain, 26-2b, grew more slowly and retained less of the total polyol produced during the early growth stages than did the wildtype. Exogenously supplied mannitol, arabinitol, and glycerol stimulated the growth of the mutant in saline media. Erythritol was without effect.Abbreviations GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

18.
Floating and nodularin-producing strains of Nodularia spumigena from the Baltic Sea are regarded as belonging to one species. However, intraspecific variation in the response of N. spumigena to environmental factors has been commonly overlooked. As blooms of N. spumigena occur in late summer, a period with strong light and stable water-column stratification, the cells can be expected to also be exposed to ultraviolet-B radiation (UV-B, 280–320 nm). The UV-B tolerance of four different strains of N. spumigena, isolated from the Baltic Sea, was investigated in the laboratory for 8 days, by measuring photosynthesis, growth and pigment composition. Variables included maximum quantum yield of photosynthesis (Fv/Fm, PAM fluorometry), growth rate (cell counts) and photosynthetic pigments, as well as mycosporine-like amino acids (HPLC). Intraspecific differences regardless of treatment were found for cell dimension, growth rate, Fv/Fm and pigment concentrations. UV-B related effects differed between strains. By Day 8 one of the four strains showed a lower Fv/Fm when treated with UV-B; in another strain the growth rate and cell numbers were lower. In three strains, UV-B exposure resulted in higher cell concentrations of carotenoids and chlorophyll a. In all strains, the concentrations of total mycosporine-like amino acids were 60–130% higher in the UV-B treated samples compared with samples shielded from UV-B. Although strain-specific differences in UV-B tolerance were observed, it is concluded that N. spumigena is a species that is not generally negatively affected by moderate levels of UV-B radiation.  相似文献   

19.
Earlier, we described a new family of mesophilic, strictly autotrophic Fe2+-oxidizing archaebacteria, Ferroplasmaceae, which belongs to the order Thermoplasmales and includes the genus Ferroplasma and the species F. acidiphilum (strain YT) [1]. The present work is concerned with a comparative study of phenotypic characteristics of the type strain Y and a new strain, F. acidiphilum Y-2, isolated from dense pulps during oxidation of gold-containing arsenopyrite/pyrite concentrates from the Bakyrchikskoe (Kazakhstan) and Olimpiadinskoe (Krasnoyarsk krai) ore deposits, respectively. The G+C content of DNA from strains YT and Y-2 comprised 35.1 and 35.2 mol %, respectively; the level of DNA–DNA homology between the strains was 84%. Restriction profiles of chromosomal DNA from both strains exhibited a similarity coefficient of 0.87. Genotypic characteristics of these strains indicate their affiliation to the same species. The cells of both strains are polymorphic and lack cell walls. Strains of F. acidiphilum oxidized ferrous iron and pyrite as the sole source of energy and fixed carbon dioxide as the sole carbon source. The strains required yeast extract as a growth factor. Optimum pH for cell growth ranged from 1.7 to 1.8; the temperature optima for the growth of strains YT and Y-2 were 34–36 and 40–42°, respectively. Comparative analysis of the total lipids revealed their close similarity in the strains; two glycophospholipids comprised 90% of the total lipids: lipid I, -D-glucopyranosylcaldarchaetidylglycerol (about 55%), and lipid II, trihexosylcaldarchaetidylglycerol (26%), whose isopranyl chains contained no cyclopentane rings. The carbohydrate fraction of lipid I hydrolysate contained only D-glucose, whereas hydrolysate of lipid II contained both D-glucose and D-galactose in a molar ratio of 2 : 1. Thus, it was established that the intraspecies phylogenetic divergence within F. acidiphilum is manifested in the two strains by different temperature optima against a background of similarity in other phenotypic properties.  相似文献   

20.
Yúfera  M.  Navarro  N. 《Hydrobiologia》1995,(1):399-405
Population growth parameters in batch culture of Brachionus plicatilis under a continuous supply of freeze-dried microalgae powder have been determined. Two B. plicatilis strains (L- and S-types) and four microalgae species (Nannochloropsis oculata, Nannochloropsis gaditana, Nannochloris oculata and Tetraselmis suecica) have been tested, establishing the dynamics of growth at different daily food rations. Cultures showed a short lag phase, an exponential growth phase, a long post-exponential growth phase and long decline with episodic increases. In both rotifer strains, the best growth was obtained with Nannochloropsis oculata and the poorest with Nannochloris oculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号