首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models.  相似文献   

2.
3.
Morphological changes appearing in the course of muscle regeneration after reinnervation of denervated M. soleus (slow) and M. tibialis anterior (fast) rat skeletal muscle were investigated. It was found that pathological changes typical for denervation atrophy (seen on the 10th day after crushing the sciatic nerve) and symptoms of regeneration (beginning about the 15th day) were much more pronounced in the soleus than in the tibialis muscle. Some stages of regeneration in the soleus muscle could be distinguished. The contractile material destructions were the first pathological changes that disappeared after the beginning of regeneration. In the second stage other denervation changes disappeared and intensive regeneration of muscle fibres was observed. In the next stage regeneration slowed down, and the reduction of the excess of muscle nuclei was visible. Four months after crushing the nerve, regeneration proceeded to completion with only some traces of the passed processes: in the soleus muscle, chains of sarcolemmal nuclei, satellite cells and newly formed muscle fibres were more often seen than in contralateral muscle; in the tibialis, collagen depots were present around the vessels and between muscle fascicles.  相似文献   

4.
The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation.  相似文献   

5.
Although skeletal muscle sympathetic nerve activity plays an important role in the regulation of vascular tone and glucose metabolism, relatively little is known about regional norepinephrine (NE) kinetics in the skeletal muscle. With use of the dialysis technique, we implanted dialysis probes in the adductor muscle of anesthetized rabbits and examined whether dialysate NE and its metabolites were influenced by local administration of pharmacological agents through the dialysis probes. Dialysate dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured as two major metabolites of NE. The skeletal muscle dialysate NE, DHPG and MHPG were 11.7+/-1.2, 38.1+/-3.2, and 266.1+/-28.7 pg/ml, respectively. Basal dialysate NE levels were suppressed by tetrodotoxin (Na(+) channel blocker, 10 microM) (5.1+/-0.6 pg/ml), and augmented by desipramine (NE uptake blocker, 100 microM) (25.8+/-3.2 pg/ml). Basal dialysate DHPG levels were suppressed by pargyline (monoamine oxidase blocker, 1mM) (24.3+/-4.6 pg/ml) and augmented by reserpine (vesicle NE transport blocker, 10 microM) (75.8+/-2.7 pg/ml). Basal dialysate MHPG levels were not affected by pargyline, reserpine, or desipramine. Addition of tyramine (sympathomimetic amine, 600 microM), KCl (100 mM), and ouabain (Na(+)-K(+) ATPase blocker, 100 microM) caused brisk increases in dialysate NE levels (200.9+/-14.2, 90.6+/-25.7, 285.3+/-46.8 pg/ml, respectively). Furthermore, increases in basal dialysate NE levels were correlated with locally administered desipramine (10, 100 microM). Thus, dialysate NE and its metabolite were affected by local administration of pharmacological agents that modified sympathetic nerve endings function in the skeletal muscle. Skeletal muscle microdialysis with local administration of a pharmacological agent provides information about NE release, uptake, vesicle uptake and degradation at skeletal muscle sympathetic nerve endings.  相似文献   

6.
BACKGROUND: Regulatory factors and detailed physiology of in vivo microcirculation have remained not fully clarified after many different modalities of imaging had invented. While many macroscopic parameters of blood flow reflect flow velocity, changes in blood flow velocity and red blood cell (RBC) flux does not hold linear relationship in the microscopic observations. There are reports of discrepancy between RBC velocity and RBC flux, RBC flux and plasma flow volume, and of spatial and temporal heterogeneity of flow regulation in the peripheral tissues in microscopic observations, a scientific basis for the requirement of more detailed studies in microcirculatory regulation using intravital microscopy. METHODS: We modified Jeff Lichtman''s method of in vivo microscopic observation of mouse sternomastoid muscles. Mice are anesthetized, ventilated, and injected with PKH26L-fluorescently labeled RBCs for microscopic observation.RESULT & CONCLUSIONS: Fluorescently labeled RBCs are detected and distinguished well by a wide-field microscope. Muscle contraction evoked by electrical stimulation induced increase in RBC flux. Quantification of other parameters including RBC velocity and capillary density were feasible. Mice tolerated well the surgery, injection of stained RBCs, microscopic observation, and electrical stimulation. No muscle or blood vessel damage was observed, suggesting that our method is relatively less invasive and suited for long-term observations.Download video file.(92M, mpg)  相似文献   

7.
8.
The internal architecture plays an essential role in determining the functional features of skeletal muscle. Both length–force and force–velocity relationships depend on the spatial arrangement of muscle fibres in skeletal muscle. The degree of muscle pennation determines both the amount of contractile tissue packed along the tendons and fibre length, and is reflected by the force-generating capacity and shortening velocity of the muscle and by the elastic properties of the muscle–tendon complex. Until recently, knowledge on human muscle architecture was based on measurements performed on cadavers, whose muscle fibres were often shrunk by the preserving medium and by age. With the introduction of non-invasive imaging techniques, it has become possible to study muscle architecture in vivo at rest and the changes thereof upon contraction. This paper discusses the applications of these techniques, namely ultrasonography and nuclear magnetic resonance imaging, and their relevance in physiology and biomechanics.  相似文献   

9.
In vivo specific tension of human skeletal muscle.   总被引:3,自引:0,他引:3  
In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography. Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used (data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used (data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m(2) in Sol and 658 kN/m(2) in TA. The use of data set A, however, yielded values of 150 and 155 kN/m(2) in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength.  相似文献   

10.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

11.
Myogenic cells from regenerating adult rat muscle were compared in culture with embryonic myoblasts. No differences were found in their growth rates or fusion characteristics. Embryonic and regenerating cells fused with one another to form mosaic myotubes. Both showed the same increase in creatine kinase activity and shift in isozyme profile following fusion. These results support the view that myogenic cells from regenerating muscle are essentially the same as embryonic myoblasts.  相似文献   

12.
13.
Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.  相似文献   

14.
Three fast myosin heavy chains in adult rat skeletal muscle   总被引:12,自引:0,他引:12  
A B?r  D Pette 《FEBS letters》1988,235(1-2):153-155
A new fast myosin heavy chain isoform was electrophoretically detected in adult rat skeletal muscles. It was present at high levels in diaphragm and, therefore, designated as MHCIId. Appreciable amounts of MHCIId were detected in tongue musculature, the extraocular muscles, and in the deep red portions of various fast muscles. Its concentration in fast-twitch muscle was greatly increased by chronic stimulation.  相似文献   

15.
16.
17.
The postmitotic nature and longevity of skeletal muscle fibers permit stable expression of any transfected gene. Direct in vivo injection of plasmid DNA, in both adult and regenerating muscles, is a safe, inexpensive, and easy approach. Here we present an optimized electroporation protocol based on the use of spatula electrodes to transfer cDNA in vivo into the adult myofibers of an anatomically defined muscle, which could be functionally characterized. In our hands, about 80% of adult myofibers were transfected in vivo by different plasmids for GFP fusion proteins or for beta-galactosidase. The luciferase activity increased several orders of magnitude when compared to standard DNA delivery. In an anatomical defined muscle, the wide gene transfer was comparable to or better than that of retrovirus delivery, that recently has been shown to be prone to severe side-effects in human clinical studies. Furthermore, with our method the tissue damage was greatly decreased. Thus, the present work describes in vivo functional electrotransfer of genes in adult skeletal muscle fibers by a protocol that is of great potential for gene therapy, as well as for basic research.  相似文献   

18.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

19.
20.
The aim of this study was to examine the morphological adaptation of the capillary network in hypertrophied plantaris muscles by examining both capillary numbers and luminal circumferences. Hypertrophy of the plantaris muscle was induced by myectomy of the gastrocnemius muscle. This hypertrophy was characterised by increases in muscle mass and fibre cross-sectional area. All capillary parameters were determined using morphometric methods in perfusion-fixed plantaris muscle. Increased capillary-to-fibre ratio was observed in the overloaded plantaris muscle while no change was observed in the capillary luminal circumference. No differences were observed in the capillary density and the capillary-to-fibre perimeter ratio of the normal and the hypertrophied plantaris muscle. These results indicated that chronic overload-induced neocapillarization, but not enlargement of capillary luminal circumference, contributed to the prevention of decreases in the capillary-to-fibre perimeter ratio in the plantaris muscle in the hypertrophied process. Accepted: 13 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号