首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas fluorescens HV37a inhibited growth of the fungus Pythium ultimum on potato dextrose agar (PDA). An antibiotic activity produced under these conditions was fractionated and partially characterized. Extracts prepared from the PDA on which HV37a was grown revealed a single peak of antibiotic activity on thin-layer chromatograms. Similar extracts were prepared from mutants of HV37a. Their analysis indicated that the antibiotic observed in thin-layer chromatograms was responsible for fungal inhibition observed on PDA. The production of the PDA antibiotic required the presence of glucose, whereas two other antibiotic activities were produced only on potato agar without added glucose. Two mutants (denoted AfuIa and AfuIb) previously characterized as deficient in fungal inhibition on PDA showed altered regulation of the production of all three antibiotics in response to glucose. These mutants were also deficient in glucose dehydrogenase. Mutants isolated as deficient in glucose dehydrogenase were also deficient in fungal inhibition and were grouped into two classes on the basis of complementation analysis with an AfuI cosmid. Glucose regulation of antibiotic biosynthesis therefore involves at least two components and requires glucose dehydrogenase.  相似文献   

2.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular gamma-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

3.
In beta-lactam producing microorganisms, the first step in the biosynthesis of the beta-lactam ring is the condensation of three amino acid precursors: alpha-aminoadipate, L-cysteine and D-valine. In Nocardia lactamdurans and other cephamycin-producing actinomycetes, alpha-aminoadipate is generated from L-lysine by two sequential enzymatic steps. The first step involves a lysine-6-aminotransferase activity (LAT), considered to be one of the rate-limiting steps for antibiotic biosynthesis. Here, we report the effect of exogenous lysine on antibiotic production by N. lactamdurans MA4213. Lysine-supplemented cultures showed higher titers of cephamycin C, an effect that was more significant at early fermentation times. The increase in cephamycin C production was not quantitatively correlated with specific LAT activity in lysine-supplemented cultures. Observation of a positive effect of lysine on cephamycin C production by N. lactamdurans was dependent on carbon source availability in the culture media. Supplementation of the culture media with exogenous lysine did not affect the mRNA levels of the early biosynthetic genes controlled by the bidirectional promoter. These results indicate that L-lysine is required not only for antibiotic biosynthesis, but particularly as carbon or nitrogen source.  相似文献   

4.
Phage 2 adsorbed to Pseudomonas aeruginosa strain BI in 5 mM Tris buffer, providing that cations like Na(+), Mg(2+), or Ca(2+) were present. Adsorption was observed over a broad pH range, reaching a maximum level around pH 7.5, which coincided with the pH required for maximal activity of the phage 2-associated slime polysaccharide depolymerase. Mutants of strain BI and other strains of P. aeruginosa possessing slime layers that were devoid of phage 2 depolymerase substrate were incapable of adsorbing phage 2. On the other hand, those strains containing substrate for the phage 2 depolymerase in the slime layer were capable of adsorbing phage 2. The same relationship of phage depolymerase-substrate interaction to phage adsorption was observed with Pseudomonas phage 8, which possesses a depolymerase that differs in its specificity from the phage 2 depolymerase. The receptor-like activity of purified slime containing the specific substrate for the phage-associated depolymerase was demonstrable by its ability to inactivate phage. However, receptor-like activity or phage inactivation was not observed with those slimes that were devoid of the depolymerase substrate.  相似文献   

5.
Some features of fusidin biosynthesis by 2 strains of Fusidium coccineum were studied proceeding from the peculiar properties of the antibiotic molecule structure. It was found that an increase in the levels of the carbon sources in the medium stimulated the biosynthesis of fusidin, while excessive concentrations of nitrogen especially in its inorganic and amino acidpeptide forms stimulated the organism growth and lowered the antibiotic activity levels. The concentration of nitrogen in the medium is considered as one of the possible control mechanisms in the processes of the fungus growth and biosynthesis of fusidin.  相似文献   

6.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

7.
Strains ofPseudomonas aeruginosa recovered from pulmonary infections in cystic fibrosis (CF) patients are often mucoid in appearance owing to the secretion of a viscous slime exopolysaccharide (EPS). Unlike most mucoid isolates, strains WcM#2, P10, and P11 produce mucoid colonies after 24 h of incubation at 37°C, which become nonmucoid upon further incubation; this suggests the presence of a slime-degrading enzyme or depolymerase. Using both qualitative and quantitative assays, the presence of a slime EPS depolymerase was confirmed in each of these three strains as well as in four of four additional mucoid strains. Depolymerase activity was lower but still detectable in four of four nonmucoid strains. Enzyme preparations from strains WcM#2, P10, and P11 were active on most, but not all, slime EPS preparations fromP. aeruginosa strains, as well as sodium alginate; greater activity was observed on substrates after deacetylation. Comparisons are made between the enzyme described in this study and previous reports of slime EPS depolymerase in mucoid strains ofP. aeruginosa.  相似文献   

8.
Summary In the slime mold Dictyostelium discoideum polyisoprenylphosphomannosides are substrates for membrane bound mannosyltransferases; the isolated and purified isoprenyl derivatives transfer mannose to protein in vitro in presence of membrane fractions. The biosynthesis of the mannolipids as well as the biosynthesis of a glucose containing cerebroside, which becomes synthesized in an early stage of the cell development proceeds under control of the cell differentiation. The isolation procedure and the properties of the glycolipids are described, and their functions for the cellular development are discussed.  相似文献   

9.
Both carbon- and nitrogen-limited media that supported a biphasic pattern of growth and chloramphenicol biosynthesis were devised for batch cultures of Streptomyces venezuelae. Where onset of the idiophase was associated with nitrogen depletion, a sharp peak of arylamine synthetase activity coincided with the onset of antibiotic production. The specific activity of the enzyme was highest when the carbon source in the medium was also near depletion at the trophophase-idiophase boundary. In media providing a substantial excess of carbon source through the idiophase, the peak specific activity was reduced by 75%, although the timing of enzyme synthesis was unaltered. Moreover, chemostat cultures in which the growth rate was limited by the glucose concentration in the input medium failed to show a decrease in specific production of chloramphenicol as the steady-state intracellular glucose concentration was increased. The results suggest that a form of "carbon catabolite repression" regulates synthesis of chloramphenicol biosynthetic enzymes during a trophophase-idiophase transition induced by nitrogen starvation. However, this regulatory mechanism does not establish the timing of antibiotic biosynthesis and does not function during nitrogen-sufficient growth in the presence of excess glucose.  相似文献   

10.
Electron microscopy of ruthenium red-stained ultrathin section of strains of Shigella dysenteriae type 1 grown in the Casamino Acids-yeast extract broth medium showed the presence of an extracellular slime layer. The slime appeared as a dense sheath covering bacteria. The presence of slime promoted hemagglutinating activity of the bacteria. The slime polysaccharide (SPS) isolated from the cell-free culture supernatant or the bacterial surface was less than 162,000 daltons in size and immunochemically similar. The SPS showed cross-reaction with lipopolysaccharide (LPS) antigen in immunological tests; however, it also appeared to be different from LPS since it did not contain 2-keto-3-deoxyoctonate, a core sugar of LPS. A different pattern of separation from LPS was also observed by silver staining of SDS-polyacrylamide gels. From these data it appeared that either LPS and SPS are contaminated with each other or that SPS is the polysaccharide portion of LPS.  相似文献   

11.
《Trends in microbiology》2023,31(6):571-585
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.  相似文献   

12.
In recent years, an increase in ocular pathologies related to soft contact lens has been observed. The most common infectious agents were Staphylococcus spp. Some strains produce an extracellular polysaccharidic slime that can cause severe infections. Polysaccharide synthesis is under genetic control and involves a specific intercellular adhesion (ica) locus, in particular, icaA and icaD genes. Conjunctival swabs from 97 patients with presumably bacterial bilateral conjunctivitis, wearers of soft contact lenses were examined. We determined the ability of staphylococci to produce slime, relating it to the presence of icaA and icaD genes. We also investigated the antibiotic susceptibility and Pulsed Field Gel Electrophoresis (PFGE) patterns of the clinical isolates. We found that 74.1% of the S. epidermidis strains and 61.1% of the S. aureus strains isolated were slime producers and showed icaA and icaD genes. Both S. epidermidis and S. aureus slime-producing strains exhibited more surface hydrophobicity than non-producing slime strains. The PFGE patterns overlapped in S. epidermidis strains with high hydrophobicity. The similar PFGE patterns were not related to biofilm production. We found scarce matching among the Staphylococcus spp. studied, slime production, surface hydrophobicity and antibiotic susceptibility.  相似文献   

13.
The inhibitory effect of the lipopeptide antibiotic amphomycin on the mechanism of mannosylphosphoryldolichol biosynthesis by calf brain rough endoplasmic reticulum membranes has been studied extensively. Calf brain rough endoplasmic reticulum membranes when incubated with varying concentrations of GDP-mannose in the presence and absence of amphomycin showed no significant difference in apparent Km for GDP-mannose (1.08 and 1.37 microM, respectively). However, the Vmax was reduced to 0.17 pmol/mg protein/min in the presence of amphomycin as compared with 1.86 pmol/mg protein/min in its absence. On the other hand, when mannosylphosphoryldolichol synthase activity was measured in the presence of amphomycin and as a function of dolichylmonophosphate (Dol-P) concentrations, the shape of the substrate velocity curve changed from a rectangular hyperbola to a sigmoid. The Hill coefficients (n) for this reaction were calculated to be 2.02 and 1.22 in the presence and absence of the antibiotic and the corresponding Km values for Dol-P were found to be 333 and 47.3 microM, respectively. In separate experiments when radiolabeled antibiotic was reacted with Dol-P in the presence of Ca2+, a complex was formed. The complex formation was dependent on both Ca2+ in the reaction mixture and fatty acid residue on the antibiotic. Similar complex formation was also observed with undecaprenylmonophosphate. No such complex, however, was formed with dolichylpyrophosphate, with undecaprenylpyrophosphate, or with their free alcohols (dolichol or undecaprenol). Furthermore, when an equimolar mixture of Dol-P and phosphatidylserine was reacted with the antibiotic under identical conditions, the complex formation was observed selectively with Dol-P. These data demonstrated that amphomycin interacted with the active site of the glycosyl-carrier lipid (Dol-P), thereby preventing its participation at the enzymatic reaction.  相似文献   

14.
MbtH-like proteins consist of ~70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes.  相似文献   

15.
In clinicalStaphylococcus aureus strains, the presence of theica genes, biofilm formation and susceptibility to antibiotics are considered important factors of virulence. In this study, 35 strains ofS. aureus, isolated from auricular infection, were investigated for slime production using Congo red agar (CRA) method, antibiotic susceptibility, presence ofmecA gene, and presence oficaA andicaD gene. The results show that 60% of strains weremecA positive when tested by PCR although 25.7% of strains were oxacillin resistant when tested with ATB STAPH. Qualitative slime production ofS. aureus using CRA revealed that 74.3% ofS. aureus were slime producers. All the strains carried theica gene.  相似文献   

16.
In order to investigate the nutritional conditions of cephamycin biosynthesis independently of the biomass growth process, the nutrient limited-resting cell system was used. A replacement medium eliminating cell multiplication was developed. The presence of Mg2+, carbon source and nitrogen source was necessary for cephamycin production by resting cells of Streptomyces lactamdurans L 2/6. Maximum antibiotic production was obtained when maltose, saccharose, and fructose were used as carbon source, and L-asparagine as nitrogen source. An inhibitory effect on the process was exerted by the calcium ions. There was no visible inhibition of cephamycin biosynthesis by inorganic phosphate ions in concentration up to 100 mM.  相似文献   

17.
The antibiotic cerulenin causes the immediate cessation of phospholipid biosynthesis in both chemoheterotrophic and photoheterotrophic cultures of Rhodopseudomonas sphaeroides. Macromolecule biosynthesis in photoheterotrophic cells was unaffected by cerulenin for the first 2 h after antibiotic addition and then continued at a reduced rate for an additional 8 h. In contrast, macromolecule biosynthesis in chemoheterotrophic cells was severely affected by cerulenin within the first 2 h of treatment. Pulse-labeling of protein after cerulenin addition revealed that all subcellular fractions were equally affected by the action of cerulenin with chemoheterotrophic cell fractions more profoundly affected than those derived from photoheterotrophic cells. Protein insertion into the intracytoplasmic membrane of photoheterotrophic cells continued for up to 6 h after the onset of cerulenin treatment. Residual macromolecule synthesis was correlated with the presence of the photosynthetic membrane system under all conditions of growth.  相似文献   

18.
The peripheral root cap cells of corn (cv. SX-17A) secrete a fucose-rich, high molecular weight, polysaccharide slime via the dictyosome pathway. To study the synthesis of this polysaccharide, a technique for isolating and assaying GDP-fucose:polysaccharide fucosyl transferase activity was developed. Corn roots were excised from germinated seeds, incubated 12 hours at 10 C in water, and ground in 100 millimolar Tris or Pipes buffer (pH 7.0) with or without 0.5 molar sucrose. The membrane-bound enzyme was solubilized by sonication in the presence of 2 molar urea and 1.5% (v/v) Triton X-100 and assayed by monitoring the incorporation of GDP-[14C]fucose into endogenous acceptors. Optimum enzyme activity is expressed at pH 7.0 and 30 C in the presence of 0.8% (v/v) Triton X-100. The enzyme does not require divalent cations for activation and is inhibited by concentrations of MnCl2 or MgCl2 greater than 1 millimolar. Corn root cap slime will serve as an exogenous acceptor for the enzyme if it is first hydrolyzed in 5 millimolar trifluoroacetic acid for 60 minutes at 18 pounds per square inch, 121 C. This procedure prepares the acceptor by removing terminal fucose residues from the slime molecule. Kinetics of fucose release during hydrolysis of native slime and in vitro synthesized product suggests that the two polymers possess similar linkages to fucose.  相似文献   

19.
Novel geldanamycin derivative, 4,5-dihydro-thiazinogeldanamycin (3), was characterized from the gdmP mutant in Streptomyces hygroscopicus 17997, besides expected 4,5-dihydro-geldanamycin (2). The presence of this compound would suggest an unknown post-PKS modification in geldanamycin biosynthesis. Compound 3 exhibited moderate anti-HSV-1-virus activity and higher water solubility than geldanamycin (1). Cysteine served as a precursor to synthesize 3, whose formation required obligatory enzymatic assistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号