首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth,reproduction and longevity in nematodes from sewage treatment plants   总被引:1,自引:0,他引:1  
The growth, reproduction and longevity of Diplogasteritus nudicapitatus, Paroigolaimella bernensis and Rhabditis curvicaudata were investigated under conditions of excess food within the temperature range 5°C–20°C. In all three species growth rate increased with temperature, and in D. nudicapitatus and R. curvicaudata the adult size attained varied significantly with temperature. P. bernensis did not reproduce at 5°C, but showed a progressive increase in reproductive output at higher temperatures. D. nudicaitatus showed increased egg production as temperature increased while R. curvicaudata had maximum egg output at 10°C. Longevity is temperature dependent, decreasing with higher temperatures. Virgin females survived for longer than reproducing females. The data indicate that while D. nudicapitatus and P. bernensis are thermophilic species, R. curvicaudata is adapted to lower temperatures.  相似文献   

2.
The combined effect of temperature (5, 10, 15, and 20°C) and illumination (40 and 60 mE/(m2 s)) on growth and reproduction of the green marine alga Ulva fenestrata P. et R. from the sublittoral zone of Amursky Bay, Sea of Japan, was studied in the laboratory environment in the months April–July, 2000. It was demonstrated that the temperature of 5°C and illumination of 40 mE/(m2 s) are the most favorable for maintaining the vegetative mass of the algae. A water temperature of 10°C and illumination of 40 mE/(m2 s) are the optimum conditions for vegetative growth of U. fenestrata thalli. A temperature decrease and increase by 5°C reduces the growth rate on average by 30%. Sporo- and gametogenesis in U. fenestrata are the most regular (every 10 days) and occupy the greatest disk area at a water temperature of 15°C and illumination of 40 mE/(m2 s). Vegetative growth of thalli is sharply inhibited at the stage of cell preparation to gametogenesis a day before the beginning of gamete formation.  相似文献   

3.
Preservation of algal spores of the green seaweed Ulva fasciata and U. pertusa was enhanced by the addition of ampicillin in f/2 medium at 4°C. The viability of preserved spores was determined by a spore germination assay at various time intervals. The germination rate of U. fasciata remained at 5% to 38% for the first five days, dropping to 1% to 6% on the 10th day of storage with various preservation treatments without ampicillin at 4°C during parameter-selecting experiments. In f/2 medium, 53% of U. fasciata spores were still viable on day 5 and 23% on day 10 at 4°C. By adding 100 μg mL−1 ampicillin to f/2 medium, 90% of the spores were viable at day 40 and 61% after 100 days of storage at 4°C. Spores of U. pertusa had lower preservation rates, with viabilities of 70% at day 40 and 32% at day 100. Algal spore preservation was heavily dependent on the bacterial contamination and subsequent degradation in stock solutions. Handling editor: L. Naselli-Flores  相似文献   

4.
Domisch  Timo  Finér  Leena  Lehto  Tarja  Smolander  Aino 《Plant and Soil》2002,239(2):173-185
We studied the effect of soil temperature on nutrient allocation and mycorrhizal development in seedlings of Scots pine (Pinus sylvestris L.) during the first 9 weeks of the growing season. One-year-old seedlings were grown in Carex-peat from a drained and forested peatland at soil temperatures of 5, 9, 13 and 17 °C under controlled environmental conditions. Fourteen seedlings from each temperature treatment were harvested at intervals of three weeks and the current and previous year's parts of the roots, stems and needles were separated. Mineral nutrient and Al contents in all plant parts were determined and the tips and mycorrhizas of the new roots were counted. Microbial biomass C and N in the growth medium were determined at the end of the experiment. None of the elements studied, except Fe, were taken up from the soil by the seedlings during the first three weeks. Thereafter, the contents of all the elements increased at all soil temperatures except 5 °C. Element concentrations in needles, stems and roots increased with soil temperature. Higher soil temperature greatly increased the number of root tips and mycorrhizas, and the numbers of mycorrhizas increased more than did the length of new roots. Cenococcum geophilum was relatively more abundant at lower soil temperatures (5 and 9 °C) than at higher ones (13 and 17 °C). A trend was observed for decreased microbial biomass C and N in the peat soil at higher soil temperatures at the end of the experiment.  相似文献   

5.
Regulation of river flow and the amount of winter rainfall are the major factors affecting the water temperature of the spawning grounds, for green sturgeon in the Klamath River. During the primary spawning period of green sturgeon, mid-April to June, the water temperature may vary from 8 to 21°C. To estimate the potential implications of this modified thermal regime, we examined the survival and development in three progeny groups of green sturgeon embryos from zygote to hatch, at constant incubation temperatures (11–26°C). Temperatures 23–26°C affected cleavage and gastrulation and all died before hatch. Temperatures 17.5–22°C were suboptimal as an increasing number of embryos developed abnormally and hatching success decreased at 20.5–22°C, although the tolerance to these temperatures varied between progenies. The lower temperature limit was not evident from this study, although hatching rate decreased at 11°C and hatched embryos were shorter, compared to 14°C. The mean total length of hatched embryos decreased with increasing temperature, although their wet and dry weight remained relatively constant. We concluded that temperatures 17–18°C may be the upper limit of the thermal optima for green sturgeon embryos, and that the river thermal regime during dry years may affect green sturgeon reproduction.  相似文献   

6.
Summary Piona exigua Viets is a predaceous freshwater mite that can potentially affect the population densities of its cladoceran prey. As part of a study of the effect of Piona exigua on its prey populations we measured the effects of water temperature and prey density on the lifespan, age at first reproduction and per capita egg production of adult female mites. Mites were raised in the laboratory at five prey (Ceriodaphnia, Daphnia) densities (5, 15, 30, 60, 120/l) at 15° C and at four temperatures (10, 15, 18, 22° C) at c. 60 prey/l. In response to increased food level, mites increased the number of eggs laid to reach a maximum at 60 prey/l, the rate at which they were laid increased and the pre-reproductive period was shorter. Low temperatures prolonged the pre-reproductive period. At temperatures above 10° C, food level and temperature had more influence on the timing of reproductive events (growth rate, oviposition rate, age at first reproduction) than on the size of females at first reproduction. When temperatures exceed 10° C and food levels exceed 5 prey/l the major scope for reproductive plasticity in Piona lies in the timing and duration of egg production.  相似文献   

7.
Ulocladium atrum and Gliocladium roseum are fungal antagonists capable of suppressing sporulation of Botrytis spp. on dead plant parts. The effect of temperature (3 to 36 °C) on antagonist conidial germination and mycelial growth was assessed on agar. In addition conidial germination of U. atrum was measured on dead lily leaves. The optimum temperature of both antagonists for both conidial germination and mycelial growth was between 27 and 30 °C. U. atrum was less affected by lower temperatures than G. roseum. At optimum temperature, 50% of conidia of U. atrum and G. roseum germinated within 2.6 and 10.0 hrs, respectively. At low sub-optimal temperatures (6 °C), 50% of conidia germinated within 18 and 96 hours, respectively.In bioassays on dead onion leaves, U. atrum suppressed sporulation of B. cinerea and B. aclada at all temperatures tested (6 to 24 °C) by more than 85%. On dead cyclamen leaves, G. roseum was more efficient than U. atrum at 21 and 24 °C but, in contrast to U. atrum, showed no antagonistic activity at temperatures below 21 °C. On dead hydrangea leaves, U. atrum significantly reduced sporulation of B. cinerea at temperatures as low as 3 and 1 °C. Under Dutch growing conditions, the mean air temperature during leaf wetness periods in onion and lily fields was 15 °C with temperatures only occasionally above 20 °C. In greenhouse crops of cyclamen, the mean temperature during high humidity periods was 17 °C. It is therefore concluded that U. atrum is better adapted than G. roseum to temperatures which occur in the field, in greenhouse crops such as cyclamen, or during cold storage of plant stocks.  相似文献   

8.
Summary The acceptability of bacterial, algal and fungal food cources as manifested by reproductive rate was investigated in Arcella vulgaris at 5°C intervals between 10°C-25°C. Bacteria and diets containing bacteria produced the highest rates of reproduction, a fungal diet induced the lowest rate of reproduction. On all diets reproductive rate increased with temperature up to 20°C, thereafter levelling out. Generation times were long, ranging from 64 h to 95 h, depending on diet and temperature. Consumption experiments using bacteria as food indicated that energy consumption was independent of temperature.  相似文献   

9.
The influence of temperature on the duration of infradian (over 28 h) rhythms of reproduction in the green alga Ulva fenestrata was studied in the laboratory under controlled conditions combining four temperatures (5, 10, 15, and 20°C), two irradiance levels (40 and 60 μE/(m2 s)) and neutral daylengths (12: 12 h light: dark). The rise in water temperature explained 78.4% of the reduction in the reproduction cycles (from 30 to 5 days). It is suggested that U. fenestrata has an endogenous reproductive rhythm with a period of 5 days. In unfavorable conditions, one or more reproduction cycles are omitted, and formation of gametes or spores attains a periodicity of 10, 15, or more days.  相似文献   

10.
The present study includes the effect of temperature on the survival of young and adult snails, embryonic development, embryonic growth and egg laying of Indoplanorbis exustus. In Indoplanorbis exustus the bottom lethal temperature was 7.0°C and 7.5°C for young and adults respectively. while the upper lethal temperature was 34.0°C and 32.0°C for young and adult snails respectively. Between the temperatures 12.5°C and 36.5°C the embryonic development was accelerated and the incubation period was shortened. The growth of embryos was found to be faster at 25.0°C. The optimum temperature for egg laying was observed at 25.0°C.  相似文献   

11.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

12.
Homogenous germlings of the marine macroalga Ulva fasciata D. (synonym, Ulva lactuca L.) were used to study hormesis effects in macroalgae grown under a low dose of 60Co γ‐ray radiation. The results of this study are the first to confirm the effects of macroalgal hormesis. Here it was demonstrated that growth of U. fasciata germlings was promoted substantially under 15 Gy of 60Co γ‐ray radiation, with an average increase of algal biomass of 47.43%. The levels of polysaccharides and lipids varied among the tested material and showed no effects from the 60Co γ‐ray radiation. However, the amount of protein was higher in the irradiated algae than in the control; the highest protein content of the irradiated algae was 3.958% (dry weight), in contrast to 2.318% in nonirradiated samples. This technique was applied to a field algal mass culture, which decreased the harvest time from 90 to 60 d. The mass culture approach may facilitate the production of macroalgae under unstable weather conditions such as typhoons in the summer or strong waves in the winter. The mass‐cultured macroalgae could be used as a source of bioenergy through the fermentation of algal simple sugars that derived from polysaccharides to produce ethanol.  相似文献   

13.
The effect of temperature from 10 °C to 35 °C on the growth, total lipid content, and fatty acid composition of three species of tropical marine microalgae, Isochrysis sp., Nitzschia closterium, N. paleacea (formerly frustulum), and the Tahitian Isochrysis sp. (T.ISO), was investigated.Cultures of N. closterium, Isochrysis sp. and T.ISO grew very slowly at 35 °C, while N. closterium did not grow at temperatures higher than 30 °C or lower than 20 °C. N. paleacea was low-temperature tolerant, with cells growing slowly at 10 °C. N. paleacea produced the highest percentage of lipids at 10 °C, while the other species produced maximum amounts of lipid at 20 °C. None of the species maintained high levels of polyunsaturated fatty acids (PUFAs) at high growth temperature and there was a significant inverse relationship between the percentage of PUFAs and temperature for N. paleacea. A curved relationship was found between temperature and percentage of PUFA for N. closterium and tropical Isochrysis sp., with the maximum production of PUFA at 25 °C and 20 °C, respectively. The two Nitzschia species produced higher levels of the essential fatty acid eicosapentaenoic acid [20:5(n-3)] at lower growth temperatures, but the two Isochrysis species had little change in percentage of 20:5(n-3) with temperature. Only T.ISO had the highest percentage of 22:6(n-3) at lowest growth temperature (11.4% total fatty acids at 10 °C).School of Mathematical and Physical SciencesAuthor for correspondence  相似文献   

14.
One-year-old tree seedlings were incubated in a greenhouse from April to July, under natural daylight conditions, with their root systems at constant temperatures of 5, 10, 15, 20, 25, 30 and 35 °C and with the above ground parts kept at a constant air temperature of 18–20 °C. The course of height growth, total mass increment, root, shoot and leaf weight as well as leaf areas were measured. The results indicate that clear differences exist in the optimal root zone temperatures for various growth parameters in different tree species. Pinus sylvestris had a maximal height increment at about 5–10 °C and maximal total mass increment at 15 °C root temperature. In contrast, the optimum for Quercus robur was at 25 °C. Tilia cordata and Fagus sylvatica had their optima for most growth parameters at 20 °C. The root temperature apparently indirectly influenced photosynthesis (dry weight accumulation) and respiration loss. From the observed symptoms and indications in the literature it seems probable that a change in hormone levels is involved as the main factor in the described effects. Variation of root temperature had only an insignificant effect on bud burst and the time at which the shoots sprouted. Apparently species of northern origin seem to have lower root temperature optima than those of more southern origin. This is to be verified by investigation of other tree species.  相似文献   

15.
Development, reproduction and population growth of Thrips setosus Moulton (Thysanoptera, Thripidae), reared on a leaf of kidney bean, was studied under six different constant temperatures, and the effect on reproduction of short photoperiod during immature stages was examined. Survival rates from hatch to adult were more than 67.5% at temperatures between 17.5 and 27.5 °C, but less than 55% at 30 °C. Developmental rates increased linearly as rearing temperature increased. A total of 181.1 degree-days, above a developmental zero of 12.5 °C, were required to complete development from egg to adult oviposition. These data were related to records of field temperatures in Kurashiki in western Japan, and an estimate produced that, under outdoor conditions, a maximum of between seven and 12 generations could have developed annually between 1990 and 1999. There were no significant differences in mean adult longevity and mean fecundity among three temperatures (20, 22.5 and 25 °C). The intrinsic rate of natural increase (r m) was 0.1997 at 25 °C. Reproductive diapause was induced by a photoperiod less than 12 h at 20 °C.  相似文献   

16.
Studies were carried out to investigate the effects of 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° and 45°C on growth, sexual maturity, reproduction and survival of the freshwater planorbid snail, Gyraulus convexiusculus, vector of echinostomiasis, under laboratory conditions. The growth rate of juvenile and sexually mature snails was at minimum at 15°C and was maximum at 35°C. Sexual maturation time was minimum at 35°C and maximum at 20°C. Fecundity was minimum at 15°C and maximum at 35°C. The minimum average and maximum number of eggs per egg capsule was reached at 35°C and lowest at 15°C. 30°C was the optimum temperature for survival of juvenile snails, while sexually mature snails reached maximum survival time at 20°C.  相似文献   

17.
We report the discovery in April 1986 of the first population of the Asiatic clam, Corbicula fluminea, known to occupy a lotic environment in the Laurentian Great Lakes system. This population occupied a 3.8 km long sandy shoal in the discharge plume of a steam-electric power plant on the St. Clair River (Michigan), the outflow of Lake Huron. Samples collected April 1986 to April 1987 revealed the growth of one-year-old Corbicula (1985 cohort) began after mid-May and ended by mid-November, while water temperatures were higher than 9 °C. Maximum growth (0.78 mm wk-1) occurred between mid-August and mid-September, while water temperatures were about 16–23 °C. We recorded a substantial overwinter mortality of the 1986 cohort, but not the 1985 cohort; this was particularly evident at sampling locations more remote from the heated discharge of the power plant, suggesting low water temperature was the major mortality agent. The available information suggests low water temperature in the St. Clair River may limit the success of Corbicula in the river, including portions of populations inhabiting thermal plumes, by reducing growth, delaying the onset of sexual maturity and reproduction, and by causing heavy overwinter mortality in the first year of life.This paper is contribution 730 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, Michigan 48105.  相似文献   

18.
Summary The seeds ofAsteracantha longifolia prefer germinating in light. Germination was also favoured in blue and red lights, whereas total darkness delayed this process. The optimum temperature for germination of seeds was 29° C in continuous white light. The seeds did germinate in total darkness as well, but the percentage of germination remained poor, and with high temperatures beyond 30° C, the pace of germination became slow. Higher temperatures suppressed the seedling growth both in continuous white light and total darkness. Blue and red lights promoted hypocotyl growth, whereas radicle was inhibited.  相似文献   

19.
Temperature tolerance (1 week exposure time) was determined at intervals during two successive years in 54 dominant marine benthic algae growing near Helgoland (North Sea). Seawater temperatures near Helgoland seasonally range between 3°C (in some years 0°) and 18°C. All algae survived 0°C, and none 33°C. Among the brown algae,Chorda tomentosa was the most sensitive species surviving only 18°C, followed by theLaminaria spp. surviving 20°, however not 23°C.Fucus spp. andCladostephus spongiosus were the most heat-tolerant brown algae, surviving 28°C. Among the red algae, species of the Delesseriaceae(Phycodrys rubens, Membranoptera alata) ranged on the lower end with a maximum survival temperature of 20°C, whereas the representatives of the Phyllophoraceae(Ahnfelitia plicata, Phyllophora truncata, P. pseudoceranoides) exhibited the maximum heat tolerance of the Helgoland marine algal flora with survival at 30°C. The latter value was also achieved byCodium fragile, Bryopsis hypnoides andEnteromorpha prolifera among the green algae, whereas theAcrosiphonia spp. survived only 20°C, andMonostroma undulatum only 10°C, not 15°C. Seasonal shifts of heat tolerance of up to 5°C were detected, especially inLaminaria spp. andDesmarestia aculeata. The majority of the dominant marine algal species of the Helgoland flora occurs in the Arctic, and it is hypothesized that also there the upper lethal limits of these species may hardly have changed even today. The data presented should provide a base for further analysis of the causes of geographical distribution of the North Atlantic algal species, but have still to be supplemented with similar investigations on other coasts, and supplemented with determinations of temperature requirements throughout the life cycle.Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek  相似文献   

20.
Summary Root growth rates of the sedge Eriophorum vaginatum L. were studied under controlled environmental conditions. The air temperature was maintained constant at 15°C while the root temperatures varied in 5°C intervals between 2° and 37° C (12° C excluded). Root growth rates of 1.2 mm d-1 at 2°, 20.4 mm d-1 at 32° C and 10.1 mm d-1 at 37° C were recorded. A Q10 of 3.2 was calculated for the temperature range from 7° to 27° C. Root growth rates at temperatures above 17° C declined after one week of growth. The degree of decline was proportional to the applied root temperature. Depletion of available nonstructural carbohydrate was the probable cause for this decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号